

UNIVERSIDAD NACIONAL DE TUMBES

INFORME CIENTIFICO FINAL

Control biológico de *Chaetanaphothrips signipennis* (Bagnall, 1914) y *Frankliniella parvula* (Hood, 1925), mediante el desequilibrio de su microbiota nativa, empleando microorganismos nativos antagonistas obtenidos de la filosfera y rizosfera del banano (*Musaacuminata*), en Tumbes-Perú, 2014-2015.

PROYECTO CANON Nº 0821-2014/UNT-R

ING. NESTOR DELFIN DIAZ CASTILLO RESPONSBLE

> TUMBES, PERÚ 2016.

RESUMEN

Los insectos plagaen el cultivo de banano y plátano los trips causan daños a los frutos *Chaetanaphothrips signipennis*Bagnall, 1914 (*C. signipennis*), ocasionando la "mancha roja del banano" y *Frankliniella parvula*Hood, 1925 (*F. parvula*), causando erupciones en los frutos del banano perjudicando la calidad y ocasionando pérdidas económicas en ciertos fundos hasta 30 %, tanto la mancha rojaproducida por (*C. signipennis*) así como (*F. parvula*) son además vectores importantes de patógenos de plantas, tales como hongos, bacterias y virus. Mediante una caracterización molecular direccionada, fuertemente a nivel metagenómico, genómico, metaproteómico y proteómico se pudo identificar molecularmente la microbiota intestinal de los diferentes estados ontogénicos de los "trips del banano", identificando las bacterias simbiontes obligadas, además se caracterizo las bacterias antagonistas de los simbiontes, provenientes de la filosfera y rizosfera del banano. Ademas se pudo caracterizar un hongo capas de causar efectos citotóxicos sobre los trips del banano. Estos hallazgos nos permiten contar con un consorcio de microoganismos capaces de desequlibrar la microbiota intestinal de los "trips del banano", dándole una alternativa de solución biológico a los agricultures del sector bananero.

1. INTRODUCCIÓN

Una de las estrategias más utilizadas en el control de plagas y enfermedades; en relación a costo, eficiencia y seguridad ambiental; está referida a la utilización de microorganismos (bacterias, hongos, etc), que sean capaces de alterar la microbiota intestinal de los insectos y/o causar efecto citotóxico.

Estos microorganismos en particular, las bacterias pueden ser encontradas en la parte aérea (filosfera) o en el suelo adherido a las raíces (rizosfera) de las mismas plantas; o incluso formar parte de una microbiota intestinal transitoria de los mismos insectos.

Los insectos cuentan con gran diversidad de microorganismos simbiontes dentro de su tracto digestivo; los cuales le ayudan a la digestión, protección, reproducción, evolución, etc. Estos microorganismos pueden ser transmitidos de forma vertical (madre a hijo) u horizontal (por interacción con el ambiente).

Las plantas constituyen uno de los reservorios más notables de microorganismos para los insectos que pueden causar un efecto benéfico o patogénico.

Con la finalidad de obtener microorganismos que sean capaces de desequilibrar la microbiota intestinal de los insectos, se aisló y caracterizó la microbiota cultivada y no cultivada de los diferentes estados y estadillos de los "trips del banano", ulterior a ellos se caracterizó molecularmente la microbiota asociada a la parte filosférica y rizosférica del banano. Finalmente se hicieron pruebas de antagonismo de las bacterias del tracto digestivo sobre las bacterias obtenidas de la planta de banano.

2. MATERIAL Y MÉTODOS

2.1 Localidad y periodo de ejecución.

La presente investigación se desarrolló en el departamento de Tumbes, provincia de Tumbes, distrito de Tumbes. EL material biológico se obtuvo del cultivo de banano plátano en el CIEA "Los Cedros" de la Universidad Nacional de Tumbes.

2.2 Métodos, técnicas e instrumentos de recolección de datos

El desarrollo de nuestra investigación comprendió dos fases;

- A) Fase de campo
- B) Fase de laboratorio

Las mismas que se explican a continuación:

- A) Fase de campo: Se realizó la recolección de "trips del banano", utilizando aspiradores de insectos, luego transferidos a tubos falcon de 50 ml. Los mismos que fueron puestos en bolsas ziploc y puestas en coolers con gelpack, para luego llevarlas al laboratorio.
- B) Fase de laboratorio: Las muestras obtenidas en campo fueron llevadas a las instalaciones de la empresa IncaBiotec SAC, para su procesamiento, análisis correspondiente y posterior envío a secuenciar. El procesamiento de las muestras comprendió lo siguiente:
 - Determinación de la microbiota cultivada del tracto digestivo de los diferentes estados de los "trips del banano" (*Ch.s y F. p*), con una caracterización molecular direccionada fuertemente a nivel metagenómico, genómico, metaproteómico y proteómico.
 - 1.1 Identificación molecular de las especies (Ch. s y F. p).
 - 1.2 Aislamiento y caracterización molecular de la microbiota cultivada y no cultivada.
 - 1.3 Caracterización molecular de la microbiota cultivada a nivel de espectrometría de masas MALDI TOF/TOF
 - 1.4 Caracterización molecular de los trips del banano a nivel proteómico.
 - Identificación y caracterización molecular de microorganismos nativos asociados a la filosfera y rizosfera del banano
 - Evaluación de cepas benéficas para la alteración de la microbiota de los trips, basándose en el análisis funcional de las pruebas de antagonismos
- 1.1 Identificación molecular de las especies Chaetanaphothrips signipennis y Frankliniella parvula.

La identificación molecular de las especies *C.signipennis* y *F. párvula* se hizo en los diferentes estados de vida de los insectos (C.sy F.p), el lugar donde se

tomaron las muestras, la ubicación geográfica como el colector responsable ver tabla 01

Especies	Estadio	Habitad En el banano	Lugar	Ubicación geográfica	colector
Chaetanaphothrips Signipennis	Adulto	Pseudotallo y fruto	Los cedros	0552146 9600795	Cesar Mogollón Farias
Frankiniella párvula	Adulto	Fruto y flores	Los cedros	0552124 9600776	Cesar Mogollón Farias

Tabla 01.Registro de colección de los especies de "Trips"

Reacción en cadena de la polimerasa (PCR)

La extracción del ADN se hizo colocando el insecto "trips" en un tubo eppendorf de 0.2 ml el cual se trituró y se obtuvo una muestra la cual se maceró con y se agregó Buffer TNES. (ver tabla 02). Posteriormente a la muestra obtenida se le adicionó 10 mg/ml proteínas y se incubó a 37 °C durante 3 - 18 horas. después de este tiempo a la muestra obtenida se le adicionó NaCl 5 M y se homogenizó mediante vortexeo vigorosamente por 15 segundos (ver tabla 03).

INDIVIDUOS	µL de BUFFER	PROCEDENCIA	Proteinasa 10mg/ml	CODIGO
				Cp.1
01	100µL	"Trips de la mancha	2 µL	Cp.1(repetición 01)
		roja"		Cp.1(repetición 02)
				Cp.2
01	50 µL	"Trips de la mancha	1 µL	Cp.2(repetición 01)
		roja"		Cp.2 (repetición 02)
10	100 µL	"Trips de la mancha	2 µL	Cp.3
		roja"		
10	50 µL	"Trips de la mancha roja"	1 µL	Cp.4
				Fp.1
01	100 µL	"Trips de la flor"	2 µL	Fp.1(repetición 01)
				Fp.1(repetición 02)
		"Trips de la flor"		Fp.2
01	50 µL		1 µL	Fp.2(repetición 01)
				Fp.2(repetición 02)
10	100 µL	"Trips de la flor"	2 µL	Fp.3
10	50 µL	"Trips de la flor"	1 µL	Fp.4

Tabla 02. Volumen de Buffer TNES por números de individuos.

Tabla 03. Concentración de NaCl

CODIGO DNA	CANTIDAD DE NaCI 5 M
Cp.1	
Cp.1(repetición 01)	30µl
Cp.1(repetición 02)	
Cp.2	
Cp.2(repetición 01)	15µl
Cp.2 (repetición 02)	
Cp.3	30µl
Cp.4	15µl
Fp.1	
Fp.1(repetición 01)	30µl
Fp.1(repetición 02)	
Fp.2	
Fp.2(repetición 01)	15µl

Fp.2(repetición 02)	
Fp.3	30µl
Fp.4	15µl

A la muestra obtenida se Microcentrifugó a 13 000 rpm por 5 minutos obteniéndose dos estratos el precipitado y el sobrenadante, transfiriendo el sobrenadantea un tubo al cual se le agregó 1 volumen de etanol 100% de pureza helado y se incubó por 1 hora a 20°C, después de transcurrido este tempo se centrifugó nuevamente a 13000 rpm por 5 minutos y a 4°C, se obtuvo nuevamente una sustancia donde se eliminó el sobrenadante quedando el residuo al cual se le añadió 50-100 μ L de Etanol al 70 % de pureza helado centrifugandose nuevemente a 10000 rpm por 5 minutos y a 4°C obteniendo asi el pellet después de eliminar la sustancia sobrenadante. Posteriormente se dejó secar el pellet a temperatura ambiente y se dilyó el ADN en T.E 1X para luego cuantificar (tabla 04).

CódigoDNA	Concentración	Pureza	Pureza260/23	Dilución para
	µg/mL	260/280	0	laPCR
Cp1	2	1,52	1,59	Directo
Cp1(repetición 01)	2	2,25	0,06	Directo
Cp1 (repetición 01)	3	1,58	0,62	Directo

Tabla 04. Cuantificación espectrofotométrica del ADN obtenido

Cp2	1	1,36	0,27	Directo
Cp2(repetición 01)	1	1,50	0,47	Directo
Cp2(repetición 02)	2	1,62	0,32	Directo
Ср3	3	1,67	0,64	Directo
Cp4	6	1,73	0,86	Directo
Fp1	1	1,55	0,31	Directo
Fp1(repetición 01)	3	2,39	0,07	Directo
Fp1(repetición 02)	1	1,60	0,47	Directo
Fp2	3	2,20	0,07	Directo
Fp2(repetición 01)	1	1,55	0,50	Directo
Fp2(repetición 02)	2	1,74	0,32	Directo
Fp3	12	2,03	0,27	Directo
Fp4	19	2,01	0,41	Directo

CONCENTRACIONES DE LOS REACTIVOS

- Buffer TNES (50 mM Tris, pH 7.5, 400 mM NaCl, 20 mM EDTA, y 0.5% SDS) y 1.7 µl de proteinasa K (10 mg/ml).
- T.E 1X PH:8 (10 mM Tris-HCL PH: 8, 1 mM EDTA PH: 8)

Reacción en cadena de la polimerasa (PCR)

Para la identificación molecular de las especies *Ch.s y F. p,* se amplificarontres locis genéticos diferentes: 18S ADN ribosomal, Tubulin -alfa I y citocromo oxidasa C subunidad I (tabla 05).

Tabla 05. Código, secuencias del primer y tamaño amplificado (en base a los pares) para la identificación de especies de thrips

CODIGO	SECUENCIA DEL PRIMER	TAMAÑO
	$5 \longrightarrow 3$	AMPLIFICADO
18S THa0.7	GCT CGT AGT TGG ATC TGT GY	1700 pb
18S THbi	GTT AGY AGG YTA GAG TCT CGT TCG	
DDVTubAF	GAR CCC TAC AAY TCY ATT CT	338 pb
DDVTubAR	GAA ACC RGT KGG RCA CCA GTC	
TH TubAF	ACA YTC VGA YTG YGC CTT CAT GG	
	CGG TAC ARG AKR CAG CAV GCC AT	
LCO1490	GGT CAA CAA ATC ATA AAG ATA TTG G	710 – 650 pb
HCO2198	TAA ACT TCA GGG TGA CCA AAA AAT CA	

A. GEN 18S ADNr.

- Se hizo PCR para la amplificación de la Región18S ribosomal (1700 pb) añadiendo los reactivos del KIT (tabla 06) de la *Taq Polimerase Recombinant*, con su ciclaje correspondiente (tabla 07).
- -
- Tabla 06. Mix de reacción para la PCR del 18S ADNr

Tabla 07. Ciclaje para la amplificación del gen 18S ADNr

Temperatura	Tiempo	Ciclo
94°C	5 minutos	1 Ciclo
94°C	30	
	segundos	

Reactivos	Cantidad por	
	muestra	
Buffer Taq 10X	2.5µL	
MgCl ₂ 25mM	2.5µL	
dNTP's 10mM	0.5µL	
Taq Polimerase 5U/	0.2µL	
μL		
DDV TubAF 15pmol	1 µL	
DDV TubAR	1 µL	
15pmol		
Agua Ultra pura	14.3µL	
ADN	3 µL	
Volumen Final 25µL		

<mark>58°</mark> C	45	35
	segundos	Ciclos
72°C	1 minuto	
72°C	4minutos	1 Ciclo
4°C	∞	

B. GEN Tubulin-alpha I

Se hizo NESTED- PCR para la amplificación con el ciclaje correspondiente (tabla 08) de la Región Tubulin alpha 1 (338 pb) Los reactivos usados para esta PCR fueron del KIT (tabl de la *Taq Polimerase Recombinant* (tabla 09)

<u>1° PCR</u>

Tabla 08. Ciclaje para la amplificación del gen Tubulin alpha

Temperatura	Tiempo	Ciclo
94°C	5 minutos	1 Ciclo
94°C	30	
	segundos	
<mark>50°</mark> C	50	35
	segundos	Ciclos
72°C	1 minuto	
72°C	4minutos	1 Ciclo
4°C	∞	

Tabla 09. Mix de reacción para la PCR del gen Tubulin alpha

Reactivos	Cantidad por	
	muestra	
Buffer Taq 10X	2.5µL	
MgCl ₂ 25mM	2.5µL	
dNTP's 10mM	0.5µL	
Taq Polimerase 5U/	0.2µL	
μL		
TH- TubAF 15pmol	1 µL	
TH- TubAR 15pmol	1 µL	
Agua Ultra pura	15.3µL	
ADN(PRODUCTO)	2 µL	
Volumen F	Final 25µL	

<u>2° PCR</u> Tabla 10. Mix de

reacción para la

segunda PCR del gen Tubulin alpha

Temperatura	Tiempo	Ciclo
94°C	5 minutos	1 Ciclo
94°C	30	
	segundos	
<mark>58°</mark> C	45	35
	segundos	Ciclos
72°C	1 minuto	
72°C	4minutos	1 Ciclo
4°C	∞	

Nota: El mix de reacción fue similar al de la primera PCR

- C. <u>GEN COX I</u>
- Se hizo PCR para la amplificación de la Región Cytochrome –oxidase I (COI), con su ciclaje correspondiente (tabla 11)
- Los reactivos usados para esta PCR fueron del KIT (tabla 12) de la *Taq Polimerase Recombinant*:

Temperatura	Tiempo	Ciclo
94°C	5 minutos	1 Ciclo
94°C	30 segundos	
<mark>49°</mark> C	60 segundos	35 Ciclos
72°C	1 minuto	
72°C	4minutos	1 Ciclo
4°C	∞	

Tabla 12. Mix de reacción para la segunda PCR del gen COI

Reactivos	Cantidad por			
	muestra			
Buffer Taq 10X	2.5µL			
MgCl ₂ 25mM	2.5µL			
dNTP's 10mM	0.5µL			
Taq Polimerase 5U/	0.2µL			
μL				
LCO 1490 15pmol	1.0µL			
HCO 2198 15pmol	1.0µL			
Agua Ultra pura	14.3µL			
ADN	3µL			
Volumen Final 25µL				

SECUENCIACION

Tabla 13. Secuenciación de los amplicones del gen 18 S rDNA

Código del	Intensidad de	F	Preparación de la muestra			
DNA/PCR	la banda	Dilución	H ₂ O UP	Amplicon	Volumen Final	secuenciación
Cp1	+ Fuerte	1/10	27 µL	3 µL	30 µL	TBA18S
Cp1(repetición 01)	+Leve	Sin dilución			20 µL	TBA18S1
Cp2	+ Fuerte	1/10	27 µL	3 µL	30 µL	TBA18S2
Fp1	+ Medio	1/5	24µL	6 µL	30 µL	TBF18S
Fp1(repetición 01)	+Fuerte	1/10	27 µL	3 µL	30 µL	TBF18S1
Fp2	+ Fuerte	1/10	27 µL	3 µL	30 µL	TBF18S2

Tabla 14. Secuenciación a partir de los amplicones del gen Tubulin alpha I

Código del	Intensidad de	Preparación de la muestra				Código de la
DNA/PCR	la banda	Dilución	H₂O UP	Amplicon	Volumen Final	secuenciación
Cp1	+ Fuerte	1/10	27 µL	3 µL	30 µL	T ATUBC
Cp1(repetición 01)	+Fuerte	1/10	27 µL	3 µL	30 µL	TBATUB1
Fp1	+ Fuerte	1/10	27 µL	3 µL	30 µL	TNTUBN
Fp2	+Fuerte	1/10	27 µL	3 µL	30 µL	TNTUBN1

Tabla 15. Secuenciación a partir del los amplicones del gen COI

Código del	Intensidad de	F	Código de la			
DNA/PCR	la banda	Dilución	H ₂ O UP	Amplicon	Volumen Final	secuenciación
Fp1	+ Mediano	1/5	24 µL	6 µL	30 µL	TCOI1
Fp1(repetición 01)	+ Leve	Sin diluir			20	TCOI2
Fp2(repetición 01)	+ Leve	Sin diluir			20	TCOI2

Aislamiento y caracterización molecular de la microbiota cultivada y no cultivada.

La caracterización molecular se hizo con el propósito de eliminar los ectomicroorganismos del de los trips, se usó un protocolo de desinfección. Las muestras fueron depositadas en tubos eppendorf de 2 ml, luego se adicionó etanol al 70 % por 3 min cumplido este tiempo se retiró el etanol y se adicionóNaClal 2% por 30 segundos, luego las muestras fueron enjuagadas con agua destilada por tres veces. Posteriormente las muestras se pusieron en tubos eppendorf adicionándoles medio de cultivo LB caldo y se dejaron las muestras por 20 minutos antes de la siembra en placas Petri.

Prueba de desinfección de los trips

La desinfección de los trips se comprobó cuando éstos se colocaron en el medio de cultivo TSA en placas petri, aquí se adicionó parte del medio de cultivo LB caldo conteniendo los "trips" y la siembra se realizó por el método de siembra por estría. Las placas fueron revisadas después de 24, 48 y 72 horas.

Liberación de la microbiota del "trips"

Después de la desinfección de los de los insectos trips, estos se depositaron en tubos eppendorf con LB caldo, se hizo la liberación de la microbiota utilizando un macerador quirúrgico esterilizado, y se adicionó un control (sin macerar). Los tubos fueron sellados con parafilm por 24 horas y después de este tiempo se hizo la siembra en placas Petri conteniendo medio de cultivo TSA por el método de siembra por estría. Las placas fueron revisadas después de 24, 48 y 72 horas.

Purificación de los microorganismos

La purificación de los microorganismos se hizo teniendo en cuenta características de tamaño, forma y color. Los precultivos se purificaron tres veces, la purificación de los microorganismos se comprobó por tinción de Gram, haciendo el frotis en láminas porta objetos y fueron observadas en un microscopio a 1000X, para su clasificación como bacteria Gram (+) y Gram (-). En cada purificación de uso un control, es decir una placa con medio de cultivo TSA. Ver tabla 16

Tabla 16. Protocolo de tinc	ión gram
-----------------------------	----------

Reactivo	Tiempo
Violeta de genciana	1 minuto
Lugol	1 minuto
Alcohol acetona	30 segundos
Safranina	1.5 minutos

En todos los pasos se lavaron las muestras con agua destilada.

EXTRACCION DE ADN Y PCR DE BACTERIAS CULTIVABLES DE Frankliniella párvula

Se tomaron bacterias sembradas en caldo LB, se centrifugaron a velocidad máxima durante 1 minuto y se eliminó el sobrenadante. Se resuspendió el sedimento en 546 µl de TE buffer (10 mM Tris pH 8.0, 50 mM EDTA), se adicionó 30 µl de SDS 10% y 3 µl de proteinasa K; se mezcló e incubó a 37 °C durante 1 hora. (al mismo este tiempo se puso a calentar el CTAB/NaCl a 65°C), se añadió 100 µl de NaCl 5M mezclando completamente, en seguida se adicionó 80 µl de CTAB/NaCl (previamente calentado) se mezcló e incubo a 65 °C durante 10 min, seguido se adicionó un volumen igual de cloroformo/alcohol isoamil (24:1) y se mezcló para formar una emulsión (invirtiendo el tubo varias veces), luego se centrifugó a 12 000 rpm durante 5 min, la parte sobrenadante a un nuevo tubo eppendorf al cual se adicionó un volumen igual de fenol/cloroformo/alcohol isoamil (25:24:1), y luego se mezcló hasta formar una emulsión a ésta se centrifugó a 12 000 rpm durante 5 min y la sobrenadante se transfirió a un nuevo tubo eppendorf al cual se le adicionó 0.6 volumen de isopropanol y se mezcló suavemente hasta precipitación del DNA. A este contenido nuevamente se centrifugó a 12 000 rpm durante 5 min, luego se eliminó el sobrenadante y al precipitado se le

adicionó 1ml de Etanol 70% de pureza (frio) y se centrifugó a 12 000 durante 5 min, se le adicionó 30 eliminó el etanol y se dejó secar a T° ambiente por 15 min. Posteriormente se resuspendió el pellet en 30 µl de TE.

El DNA obtenido se le adicionó 1 µl de solución de RNAsa e incubó a 37°C durante 1 hora.

a. PCR (09 – 02- 15 y 11- 02- 15)

Tabla 17. Reacción dirigida hacia el gen 16s ARNr

Reacción dirigida hacia el gen 16s ARNr		Programa del termociclador			
		35 ciclos			
Reactivos	1 Reacción	13 reacciones	Proceso	Temperatura	Tiempo
Buffer Master mix 10X	2.5	32.5	Desnaturalización inicial	94 °C	6 min.
MgCl2	2.5	32.5	Desnaturalización	94 °C	30 seg.
Taq polimerasa	0.1	1.3	Hibridación	58 °C	45 seg.
DNTPs	0.5	6.5	Elongación	72 °C	1 min.
16s ARNr F	0.6	7.8	Elongación final	72 °C	4 min.
16s ARNr R	0.6	7.8	T° final conservación	4 °C	10 horas
Agua µltra pura	16.2	210.6			
2 µl de ADN: 1M, 2F, 2I, 3M, 4M, 5M			, 6M, 7M, 8M, 9M, 10M, CI	E, C- PCR	

EXTRACCIÓN DE ADN Y PCR DE BACTERIAS CULTIVABLES DE Frankliniella párvula (restantes)

b. Extracción de DNA bacterias.

Se tomaron bacterias sembradas en caldo LB, se centrifugaron a velocidad máxima durante 1 minuto eliminando el sobrenadante. Al precipitado se resuspendiócon 546 ul de TE buffer (10 mM Tris pH 8.0, 50 mM EDTA), se adicionó 30 ul de SDS 10% y 3 ul de proteinasa K y se mezcló e incubó a 37 °C durante 1 hora. (durante este tiempo se puso a calentar el CTAB/NaCl a 65°C).

Al precipitado se le añadió 100 ul de NaCl 5M y se mezcló completamente y se adicionó 80 ul de CTAB/NaCl (previamente calentado) se mezcló e incubó a 65 °C durante 10 min. Posteriormente se le adicionó un volumen igual de cloroformo/alcohol isoamil (24:1) y se mezcló bien para formar una emulsión (invirtiendo el tubo varias veces) luego se centrifugó a 12 000 rpm durante 5 min. Se transfirió la fase sobrenadante a un nuevo tubo eppendorf al cual se le adicionó un volumen igual de fenol/cloroformo/alcohol isoamil (25:24:1), se mezcló hasta formar una emulsión, se centrifugó a 12 000 rpm durante 5 min y se transfirió la fase superior a un nuevo tubo eppendorf.

Posteriormente se adicionó 0.6 volumen de isopropanol y se mezcló suavemente hasta precipitación del DNA. Se centrifugo a 12 000 rpm durante 5 min, luego se eliminó el sobrenadante.Se le adicionó 1ml de Etanol 70% (frio) se centrifugo a 12 000 rpm durante 5 min y se eliminó el etanol y se dejó secar a T° ambiente por 15 min resuspendiendo el pellet en 30 ul de TE. Al final se trató el DNA con 1 ul de solución de RNAsa e incubo a 37°C durante 1 hora.

c. PCR

Reacción dirigida hacia el gen 16s ARNr		Programa del termociclador			
		35 ciclos			
Reactivos	1 Reacción	26 reacciones	Proceso	Temperatura	Tiempo
Buffer Master mix 10X	2.5	65	Desnaturalización inicial	94 °C	6 min.
MgCl2	2.5	65	Desnaturalización	94 °C	30 seg.
Taq polimerasa	0.1	2.6	Hibridación	58 °C	45 seg.
dNTPs	0.5	13	Elongación	72 °C	1 min.
16s ARNr F	0.6	15.6	Elongación final	72 °C	4 min.
16s ARNr R	0.6	15.6	T° final conservación	4 °C	10 horas
Agua ultra pura	Agua ultra pura 16.2 421.2				
2 ul de ADN: 11M, 12M, 13M, 14M, 15M, 16M, 17M, 18M, 19M, 20M, 21M, 22M, 23M, 24M, 26M, 27M, 28M, 29M, 30M, 31M, 32M, 33M, 53M, CE, C- PCR					

Tabla 18. Reacción dirigida hacia el gen 16s ARNr

EXTRACCIÓN DE ADN PARA MICROBIOTA DE INSECTOS /THRIPS (METAGENOMICA)

A. DESINFECCION DE INSECTTOS

La desinfección de los insectos se hizo colocando los thrips en los tubos

eppendorf agregandole600 ul de etanol al 70% de pureza, se centrifugó a 6000

rpm por 1 min, se obtuvo sedimento y se agregó 400 ul de cloro al

2%, nuevamente se centrifugó a 6 000 rpm por 30 segundos obteniendo

nuevamente el precipitado al cual se le agregó 600 ul de agua destilada

(autoclavada), una centrifugción final a 6 000 rpm por 1 minuto se obtuvo el precipitado al se lavó por tres veces.

- Nota: para los huevos solo se hizo una desinfección con Etanol al 70%
- B. EXTRACCION
- > OPCIONAL: Macerar antes de agregar el buffer
- Agregamos 555 ul de Buffer TE (10 mM Tris-HCI (pH 8) 50 mM EDTA).
- Se agregó 5.0 ul de lisozima y se colocó a baño María a 37°C por 20 minutos.
- Se Agregaron perlas de vidrio (autoclavada) y se centrifugó a 13 000 rpmpor 30 min. Se recuperó el sobrenadante y se colocó en otro tubo eppendorf al cual se le agregó 30 ul de SDS al 10% y 3 ul de proteinasa K yse colocóa Baño María a 37 °C por 40 minutos.
- Se agregó 100 ul de NaCl 5M, 80 ul de CTAB/NaCl, y se colocóa baño
 María a 65 °C por 10 minutos,
- Se agregó un volumen igual de fenol /cloroformo/ alcohol isoamil, centrifugar a 13 000 rpm por 5 min. Se observaran dos fases.
- La fase superior se colocó en otro tubo (aprox. 500 ul). A este se le agrego isopropanol (0.6 v), centrifugamos a 13 000 rpm por 10 min
- Se eliminó el sobrenadante quedando el pellety se agregó 800 ul de etanol al 70%, y se centrifugó a 13 000 rpm por 10 min, se eliminó el sobrenadante quedando el pellet, el cual se puso a secar a T° ambiente por 25 min. Se agregó TE (resuspender) y se guardar el ADN a -20 °C

CÓDIGOS DE LAS MUESTRAS

- > A. Ch.s: Adulto de Chaetanaphothrips signipennis
- > H. F.p: Adulto de Frankliniella párvula
- NOTA: para la extracción se colocaron 50 huevos de F.p. En un tubo eppendorf y entre 50 y 100 adultos de Ch.s.

Tabla 19. Cuantificación de muestras de extracción de ADN (METAGENOMICA)

	H. F.p	A.Ch.s
MUESTRA		
CANTIDAD (ug/ml)	59	352
260/280	2.11	2.10
260/230	1.71	2.03

Reacción dirigida hacia el gen 16s ARNr			Programa del termociclador		
			35 ciclos		
Reactivos	1 Reacción	4.0 reacciones	Proceso	Temperatura	Tiempo
Buffer Taq. 10X	2.5	10.0	Desnaturalización inicial	94 °C	6 min.
MgCl2	2.5	10.0	Desnaturalización	94 °C	30 seg.
Taq polimerasa	0.1	0.4	Hibridación	58 °C	45 seg.
dNTPs	0.5	2.0	Elongación	72 °C	1 min.
16s ARNr F	0.6	2.4	Elongación final	72 °C	4 min.
16s ARNr R	0.6	2.4	T° final conservación	4 °C	1 horas
Agua ultra pura	16.2	64.8			
2 ul de ADN DILUIDO: Ch, H. F, CE, C- PC					

Tabla 20. Reacción dirigida hacia el gen 16s ARNr METAGENOMICA (Bacterias)

Nota: a todas las muestras se les hizo una dilución de 1:10 (3 ul ADN y 27 ul de AUP)

1.3 Caracterización molecular de la microbiota cultivada a nivel de espectrometría de masas MALDI TOF/TOF

I. PROCEDIMIENTO:

Se centrifugaron los cultivos bacterianos a 10.000 rpm por 10 minutos se eliminó el sobrenadante. Al sedimento celular se congeló durante 15 minutos en hielo seco (-20°C fue por 30 minutos). Se descongeló y adicionó 100ul de Buffer nativo lisis vortex suave y sonicar 5minutos-

Se Incubó en hielo durante 30 minutos, y se homogenizó por inversión suave (manual) cada 10 minutos. Después nuevamente se centrifugó a 14.000 rpm por 30 minutos a 4 °C y se separan el sedimento y el sobrenadante.

El sobrenadante contiene la fracción de la proteína de las células bacterianas 30 ul de la proteína se trabajó para gel SDS PAGE 10%.

DIGESTIÓN EN GEL DE PROTEÍNAS

• Se cortaron las bandas diferencialesy presenciales(1mm x 3mm) y se colocaron en tubos individualmente.

DECOLORACION DE LAS BANDAS DEL GEL TEÑIDAS CON AZUL DE COOMASSIE

Se logró adicionando 100ul de bicarbonato de amonio 100 Mm /acetonitrilo (1:1) se incubó por agitación ocasional por 30 minutos. Se adicionó nuevamente 500 ul de acetonitrilo puro y se puso a incubar a Temperatura ambiente agitando ocasionamentel hasta que las piezas se tornen blancas y encogidas, luego se extraijo el acetonitrilo.

SATURACION DE LAS PIEZAS DEL GEL CON BUFFER TRIPSINA

Se agregó suficiente buffer tripsina (13 ng/ul) hasta cubrir las piezas del gel Aproximadamente 50 ul y se almacenó en la refrigeradora -4 °C. Se adicionó 10 ul de buffer bicarbonato amonio (10 Mm bicarbonato de amonio 10% acetonitrilo) y mantuvo húmedas durante la actividad enzimática. a mayor tiempo de incubación se observa mayor clivaje de los péptidos.

DIGESTION DE LAS PROTEINAS EN LA PIEZA DEL GEL

 Se Incubó las piezas del gel a 37 °C toda la noche, al día siguiente se centrifugaó rápido y se extrajo alícuotas de 1.5 ul para el análisis directo (mapeo peptídico).

EXTRACION DE PEPTIDOS

1.4 Caracterización molecular de los trips del banano a nivel proteómico.

Colección de los especímenes.

Los especímenes del "trips de la mancha roja del banano" fueron colectados en el centro experimental "Los Cedros", de la Universidad Nacional de Tumbes, con la ayuda de un aspirador entomológico y depositados en tubos eppendorf de 1.5 ml, autoclavados.

Preparación de las muestras para espectrometría de masas MALDI Tof/Tof. Extracción de proteínas de insectos

A diez especímenes en tubos eppendorf de 1.5 ml se les adiciono 400 μ l de metanol acidificado, se trituraron con la ayuda de un macerador quirúrgico, se homogenizo la muestra con la ayuda de un vortex y luego se llevó a sonicar por 12 minutos. Se centrifugo 13 000 rpm/25 minutos, luego se recuperó el sobrenadante y se trasfirió en un nuevo tubo.se adiciono 2.5 volúmenes de Acetona (pre-enfriada). Se llevó a incubar a – 20 ° C/ 2 horas (cada 10 minutos se homogenizo la muestra). Se centrifugó a 10000 rpm/ 5 minutos. Nuevamente se eliminó el sobrenadante para finalmente resuspender el sedimento con agua grado HPLC.

Digestión de proteínas con tripsina en solución: Reducción y alquilación.

Adicionar 15 µl de buffer digestión (50mM de bicarbonato de amonio), luego 1.5 µl de buffer alquilación (100mM de DTT), 10 µl de proteína, ajustar el volumen a 27 µl. Incubar la muestra a 95 °C por 5 minutos. Dejar reposar (enfriar). Adicionar 3 µl de buffer de alquilación e incubar 20minutos en oscuridad a T° ambiente. Digestión.

Se adiciono 1 µl de tripsina bovina e incubo a 37°c por 3 horas. Se agregó 1 µl de tripsina e incubar 30°c toda la noche. Se agregó 5ul de TFA al 20% (parar la digestión).

Enriquecimiento de péptidos después de la digestion Zip Tip (c18).

Se humedeció la columna con una solución de 80% de Acetonitrilo en agua grado HPLC, luego se equilibró la columna con una solución de 0.1% de TFA en agua grado HPLC. Se aspire y dispenso la muestra (proteína 10 veces de igual manera para humedecer, equilibrar, extraer péptidos) en la columna. Se equilibrar la columna con una solución de 0.1% de TFA en agua grado HPLC. Elución de péptidos en una solución de 80% de ACN en agua grado HPLC. Se secó en bomba al vacío y se resuspendió en 0.15TFA en agua grado HPLC, se espoteó 1 µl de proteínas en la placa MALDO opti –TOF 1-1 V/V. finalmente se adiciono directamente a la muestra 1 µl de matriz Acido cinapinico.

Parámetros de espectros de masas MALDI Tof/Tof.

El rango de masas en modo Tof reflecton ion positivo, fue de 400 a 8000 kDa y con una intensidad de laser de Nd: YAG, 324 nm wavelength, 3 ns pulse WIVTH, 1000 Hz firing rate. En modo tof/ tof el rango de masas se realizó por defecto del equipo. Se utilizó el espectrómetro de masas 5800 AB Sciex TOF/TOF TM 5800 System, la base de datos para analizar las proteínas encontradas en el software protein pailot versión 4.0.

 Identificar y caracterización molecular de microorganismos nativos asociados a la filosfera y rizosfera del banano.

En campo

Se colectaron sub-muestras de 1kg de suelo.

Se mezcló y homogeneizo y se obtuvo 1 kg de suelo como muestra representativa del sitio.

Para el caso de la filosfera se llevó tubos eppendorf con medio Luria bertani caldo, se hizo un raspado de las hojas de banano con isopos autocladados y se sumergió en el medio, para luego ser trasladado al laboratorio.

En el laboratorio

El aislamiento del material del suelo se realizó directamente el método de dilución en placa, se diluyó el suelo en proporción 1/1000 (p/v), de esta suspensión se tomó una alícuota de 0.5 mL uniformemente sobre la superficie de una caja Petri con el medio de cultivopapa-dextrosa-agar (PDA).

1 g de suelo a 10 ml de agua destilada estéril y agitando durante 15 min. Cada suspensión fue luego diluida en serie de hasta 10-6. De esta dilución, una alícuota de 0,1 ml se extendió sobre un medio PDA (hongos y LB agar).

Para el caso de la filosfera el medio liquido fue sembrado en placas LB agar con un fungicida.

Se realizaron tres purificaciones de cada colonia bacteriana y para el caso de los hongos fueron replicados dos veces.

Extracción de ADN bacteriano total (Método TENS):

Los tubos eppendorf conteniendo los cultivos puros en LB caldo, fueron centrifugados en el cultivo por 2 minutos a 10000 rpm y se descartó el sobrenadante.

Al precipitado se le adicionó 400 µl de solución lisis (TENS), 10 mg de lisosima y 2 µl de proteinasa K por cada muestra. A la muestra obtenida se incubó por 2 horas a 56 °C en baño maría.

1.3 Caracterización molecular de la microbiota cultivada a nivel de espectrometría de masas MALDI TOF/TOF

II. PROCEDIMIENTO:

Para hacer la caractrizació molecular se centrifugaron los cultivos bacterianos a 10.000 rpm por 10 minutos. Se eliminó el sobrenadante y al precipitado celular se congeló durante 15 minutos en hielo seco (-20°C). después se descongeló y se adicionó 100ul de Buffer nativo lisis y con vortex suave y sonicar por 5minutos. Luego se Incubó en hielo durante 30 minutos y se homogenizó por inversión suave(manual) cada 10 minutos, después de este paso se centrifugóa 14.000 g 30 minutos a 4 °C.se tomó el sobrenadante por contener proteína de las células bacterianas a las cuales se le adicionó 30 ul de la proteína y se trabajó para gel SDS PAGE 10%.

DIGESTIÓN EN GEL DE PROTEÍNAS

Se Cortaron las bandas diferenciales y presenciales con una hoja de bisturí estéril (1mm x 3mm) y fueron colocarlas en tubos individualmente.

DECOLORACION DE LAS BANDAS DEL GEL TEÑIDAS CON AZUL DE COOMASSIE

La decoloración de kas bandas se hizo adicionando 100ul de bicarbonato de amonio 100 Mm /acetonitrilo (1:1) se incubó pro agitación ocasional por 30 minutos dependiendo del grado de tinción. Se adicionó 500 ul de acetonitrilo puro incubar a T° ambiente con agitación ocasional hasta que las piezas se tornaron blancas y encogidas. luegose extrajo el acetonitrilo.

SATURACION DE LAS PIEZAS DEL GEL CON BUFFER TRIPSINA

Se agregó suficiente buffer tripsina (13 ng/ul) hasta cubrir las piezas del gel Aproximadamente 50 ul y se almacenó en la refrigeradora -4 °C y después de 30 minutos se observó la absorción del buffer tripsina.se adicionó 10 ul de buffer bicarbonato amonio (10 Mm bicarbonato de amonio 10% acetonitrilo) y se mantuvo húmedas durante la actividad enzimática.

DIGESTION DE LAS PROTEINAS EN LA PIEZA DEL GEL

Se Incubó las piezas del gel a 37 °C toda la noche y se dio un centrifugado rápido y se extrajo alícuotas de 1.5 ul para el análisis directo. (mapeo peptídico).

EXTRACION DE PEPTIDOS

1.4 Caracterización molecular de los trips del banano a nivel proteómico.

Colección de los especímenes.

Los especímenes del "trips de la mancha roja del banano" fueron colectados en el centro experimental "Los Cedros", de la Universidad Nacional De Tumbes, con la ayuda de un aspirador entomológico y depositados en tubos eppendorf de 1.5 ml, autoclavados.

Preparación de las muestras para espectrometría de masas MALDI Tof/Tof.

Extracción de proteínas de insectos

A diez especímenes en tubos eppendorf de 1.5 ml se les adiciono 400 µl de metanol acidificado, se trituraron con la ayuda de un macerador quirúrgico, se homogenizo la muestra con la ayuda de un vortex y luego se llevó a sonicar por 12 minutos. Se centrifugo 13 000 rpm/25 minutos, luego se recuperó el sobrenadante y se trasfirió en un nuevo tubo.se adiciono 2.5 volúmenes de Acetona (pre-enfriada). Se llevó a incubar a – 20 ° C/ 2 horas (cada 10 minutos se homogenizo la muestra). Se centrifugo a 10000 rpm/ 5 minutos. Se eliminó el sobrenadante para finalmente resuspender el sedimento con agua grado HPLC.

• Digestión de proteínas con tripsina en solución: Reducción y alquilación.

Adicionar 15 µl de buffer digestión (50mM de bicarbonato de amonio), luego 1.5 µl de buffer alquilación (100mM de DTT), 10 µl de proteína, ajustar el volumen a 27 µl. Incubar la muestra a 95 °C por 5 minutos. Dejar reposar (enfriar). Adicionar 3 µl de buffer de alquilación e incubar 20minutos en oscuridad a T° ambiente.

Digestión.

Se adiciono 1 µl de tripsina bovina e incubo a 37°c por 3 horas. Se agregó 1 µl de tripsina e incubar 30°c toda la noche. Se agregó 5ul de TFA al 20% (parar la digestión).

Enriquecimiento de péptidos después de la digestion Zip Tip (c18).

Se humedeció la columna con una solución de 80% de Acetonitrilo en agua grado HPLC, luego se equilibró la columna con una solución de 0.1% de TFA en agua grado HPLC. Se aspire y dispenso la muestra (proteína 10 veces de igual manera para humedecer, equilibrar, extraer péptidos) en la columna. Se equilibrar la columna con una solución de 0.1% de TFA en agua grado HPLC. Elución de péptidos en una solución de 80% de ACN en agua grado HPLC. Se secó en bomba al vacío y se resuspendió en 0.15TFA en agua grado HPLC, se espoteó 1 µl de proteínas en la placa MALDO opti –TOF 1-1 V/V. finalmente se adiciono directamente a la muestra 1 µl de matriz Acido cinapinico.

Parámetros de espectros de masas MALDI Tof/Tof.

El rango de masas en modo Tof reflecton ion positivo, fue de 400 a 8000 kDa y con una intensidad de laser de Nd: YAG, 324 nm wavelength, 3 ns pulse WIVTH, 1000 Hz firing rate. En modo tof/ tof el rango de masas se realizó por defecto del equipo. Se utilizó el espectrómetro de masas 5800 AB Sciex TOF/TOF TM 5800 System, la base de datos para analizar las proteínas encontradas en el software protein pailot versión 4.0.

 Identificar y caracterización molecular de microorganismos nativos asociados a la filosfera y rizosfera del banano.

<u>En campo</u>

- Se colectaron sub-muestras de 1kg de suelo.
- Se mezcló y homogeneizo, 1 kg como muestra representativa del sitio.
- Se considera cada sub-muestra de suelo de los primeros 20 cm de profundidad, eliminando la materia orgánica superficial.
- Para el caso de la filosfera se llevó tubos eppendorf con medio Luria bertani caldo, se hizo un raspado de las hojas de banano con isopos autocladados y se sumergió en el medio, para luego ser trasladado al laboratorio.

En el laboratorio

El aislamiento se realizó directamente del suelo por el método de dilución en placa.

Se diluyó el suelo en proporción 1/1000 (p/v), de esta suspensión, dispersar una alícuota de 0.5 mL uniformemente sobre la superficie de una caja Petri con el medio de cultivopapa-dextrosa-agar (PDA).

1 g de suelo a 10 ml de agua destilada estéril y agitando durante 15 min. Cada suspensión fue luego diluida en serie de hasta 10-6. De esta dilución, una alícuota de 0,1 ml se extendió sobre un medio PDA (hongos y LB agar).

Para el caso de la filosfera el medio liquido fue sembrado en placas LB agar con un fungicida.

Se realizaron tres purificaciones de cada colonia bacteriana y para el caso de los hongos fueron replicados dos veces.

Extracción de ADN bacteriano total (Método TENS):

 Los tubos eppendorf conteniendo los cultivos puros en LB caldo fueron centrifugados en el cultivo por 2 minutos a 10000 rpm y se obtuvo el precipitado y se descartó el sobrenadante. Al precipitado se le añadio 400 µl de solución lisis (TENS), 10 mg de lisosima y 2 µl de proteinasa K por cada muestra y se incubó por 2 horas a 56 °C en baño maría.

Reacción en cadena de la polimerasa (PCR).

Para la caracterización molecular se amplificó mediante la técnica de PCR el gen 16S ADN ribosomal con primers universales 27-f y 1492-r. Los protocolos de replicación artificial para la amplificación del gen 16S ADN ribosomal se detallan en la tabla 21.

Tabla 21. Secuencia nucleotídica de los primers 27- f 1492-r para amplificar el gen 16S ADN ribosomal.

Primers	Sentido	Secuencia		
27- f	Forward	5'- AGAGTTTGATCMTGGCTC- 3'		
1492-r	Reverse	5'- TACGGYTACCTTGTTACGACTT- 3'		
M : Ac	lenina o Ci	tosina Y : Timina o Citosina.		

Tabla 22. Composición del Mix de reacción para la amplificación del gen 16S ADN ribosomal.

Volumen de reacción de 23 µl para muestras, incluyendo un control (+) de extracción + un control (-) de PCR y un control (-) de extracción.				
	μΙ			
AUP	16.2			
Buffer	2.5			
Cl ₂ Mg	2.5			
dNTPs	0.5			
Iniciador Fower	0.6			
Iniciador Rever	0.6			
Taq polimerasa	0.1			
ADN (*)	2 μl por cada muestra.			
Total	25			

(*) Se adiciona en el momento de desarrollar el protocolo de replicación artificial para la amplificación.

Tabla 23. Protocolo de replicación artificial para la amplificación del gen 16S ADN riboso	omal,
según fase, tiempo, ciclos y temperatura.	

Fase	Tiempo	Ciclos	Temperatura	
Desnaturalización del ADN	1 minuto		94 °C	
Hibridación	1 minuto	35	58 °C	
Polimerización	1 minuto		72 °C	

Electroforesis

Los amplicones obtenidos (producto de la PCR), fueron observados en gel de migración preparado con 1,8 gr de agarosa, 120 ml de TAE y 6 µl de bromuro de etidio. Se utilizó un marcador de peso molecular para la determinación del tamaño del amplicón.

Secuenciación

Los ampliconesobtenidos en la PCR, se enviaron a secuenciar. Las bandas fuertes y medianamente fuertes fueron previamente diluidas en agua ultra pura.

3) Evaluación de cepas benéficas para la alteración de la microbiota de los trips, basándose en el análisis funcional de las pruebas de antagonismos Para las pruebas de antagonismo se utilizaron las cepas bacterianas de la microbiota intestinal de los "trips del banano" que por referencia son simbiontes obligados y no transitorios; de la misma manera hemos seleccionados cepas de la filosfera y rizosfera para compararlas con las de la microbiota intestinal. Las pruebas de antagonismo se midieron según la siguiente tabla:

DIÁMETRO DE INHIBICIÓN	CÓDIGO	CONDICIÓN DE LA INHIBICIÓN
>10 mm	+++	Inhibición fuerte
2 – 10 mm	++	Inhibición moderada
>2mm	+	Inhibición débil

Tabla 24. Análisis funcional de pruebas de antagonismo

Para el caso de hongos, estos fueron aplicados en "tarrinas de crianzas" conteniendo "trips del banano" para poder observar el efecto citotóxico obre los "trips del banano".

4. RESULTADOS

Respecto a la Identificación molecular de las especies *Ch. signipennis y F. párvula*, las secuencias obtenidas producto de la amplificación de los tres locis genéticos diferentes: 18S ADN ribosomal, Tubulin -alfa I y citocromo oxidasa C subunidad I fueron analizados en la herramienta básica de búsqueda de alineamiento local (BLAST) <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>. Los datos son presentados en la siguiente tabla:

INSECTO	codigo	Primer	ESPECIE POR	IDENT
			SECUENCIACION	
Chaetanaphothrips	TATUBC_THTubAF	TUBULIN	Frankliniella occidentalis	88%
signipennis		ALFA	(Pergande)	
Chaetanaphothrips	TBA18S_18STHa07	18 S	Palmiothrips sp.	98%
signipennis				
Chaetanaphothrips	TBA18S1_18STHa07	18 S	Palmiothrips sp.	98%
signipennis				
Chaetanaphothrips	TBA18S2_18SThbi	18 S	Palmiothrips sp.	98%
signipennis				
Chaetanaphothrips	TBATUB1_THTubAF	TUBULIN	Heliothrips haemorrhoidalis	83%
signipennis		ALFA		
Frankliniella parvula	TBF18S_18STHa07	18 S	Frankliniella occidentalis	99%

Frankliniella parvula	TBF18S1_18STHa07	18 S	Frankliniella occidentalis	99%
Frankliniella parvula	TBF18S2_18STHa07	18 S	Frankliniella occidentalis	99%
Frankliniella parvula	TCOI1_HCO2198	COI	Frankliniella tritici	86%
Frankliniella parvula	TCOI2_HCO2198	COI	Frankliniella tritici	85%
Frankliniella parvula	TCOI3_LCO1490	COI	Frankliniella tritici	85%
Frankliniella parvula	TNTUBN_THTubAF	TUBULIN	NO HAY IDENTIDAD	
		ALFA		
Frankliniella parvula	TNTUBN1_THTubAF	TUBULIN	Heliothrips haemorrhoidalis	83%
		ALFA		

Para el aislamiento y caracterización molecular de la microbiota cultivada y no cultivada, Los datos de las secuencias de 16S ADNr de las bacterias cultivadas, han sido analizados en la herramienta básica de búsqueda de alineamiento local (BLAST) <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>; que está conectado con el centro nacional de información biotecnológica y para el caso de los Metagenómas. La microbiota intestinal de los trips del banano fueron analizados en laplataforma MG RAST.

Tabla 26. Aislamiento y caracterización molecular de la microbiota cultivada y no cultivada.

ESPECIE	ESTADO	CEPA	ORGANISMO	SECUENCIA MÁS	COD.	%IDENTIDAD
				CERCANA	ABSESION	
F. párvula	S	1M	Acinetobacter	Acinetobacter soli	GB859739.1	99
F. párvula	- DS -	2M	Serratia	Serratia nematodiphila	EU914257.1	99
F. párvula		3M	Acinetobacter	Acinetobacter baumannii	KC900896.1	99
F. párvula	AD	4M	Acinetobacter	Acinetobacter baumannii	KC900896.1	99
F. párvula	DE	5M	Acinetobacter	Acinetobacter baumannii	KC900896.1	99
F. párvula		6M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula		7M	Pantoea	Pantoea agglomerans	GQ374472.2	99
F. párvula	CTAL -	8M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula	- Ŭ - 4 Z	9M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula		10M	Serratia	Serratia marcescens	GQ465847.1	100
F. párvula		11M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula		12M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula		13M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula	ZY	14M	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula	- IS SI ECT/	15M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	JEVC –	16M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	– HL	17M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100

ESPECIE	ESTADO	CEPA	ORGANISMO	SECUENCIA MÁS CERCANA	COD. ABSESION	%IDENTIDAD
F. párvula		18M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	_	19M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	_	20M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	SO	21M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	_ AD _	22M	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula		23M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	[−] Ľ Z	24M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	⊃ES	25M	Acinetobacter	Acinetobacter soli.	JX966422.1	99
F. párvula		26M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula	_ N N	27M	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula		28M1	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula	ПН	28M2	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula	-	29M	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula	-	30M	Acinetobacter	Acinetobacter baumannii	KC900896.1	100
F. párvula	-	31M		Uncultured bacterium	JX222871.1	93
F. párvula		32M	Acinetobacter	Acinobacter baumannii	KC900896.1	100
F. párvula	Z AR	33M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	S S E S B	34M	Acinetobacter	Acinetobacter sp.	KF999996.1	99
F. párvula	- AAN INF	35M	Acinetobacter	Acinetobacter baylyi.	Kj143626.1	99
F. párvula	NIL DES	36M	Acinetobacter	Acinetobacter sp	KF999996.1	99
F. párvula	- L	37M	Acinetobacter	Acinetobacter sp.	KF999996.1	99

				· · · · ·		
ESPECIE	ESTADO	CEPA	ORGANISMO	SECUENCIA MAS CERCANA	COD. ABSESION	%IDENTIDAD
F. párvula	(<u>)</u> _	38M				
F. párvula	INFA DESI	39M	Serratia	Serratia sp.	KR058830.1	96
F. párvula		40M	Serratia	Serratia sp.	KF135458.1	92
F. párvula	z ν z	41M	Acinetobacter	Acinetobacter baumannii	KC900896.1	99
F. párvula		44M	Erwinia	Erwinia sp	HQ154553.1	99
F. párvula	_	45M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula	_	46M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	_	47M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	_	48M	Pantoea	Pantoea sp.	KF514103.1	99
F. párvula		49M	Pantoea	Pantoea agglomerans	GQ374472.1	98
F. párvula	~	50M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula	_ AF	51M	Pantoea	Pantoea agglomerans	GQ374472.1	100
F. párvula	C	52M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula		53M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula		54M	Acinetobacter	Acinetobacter sp.	GQ478266.1	100
F. párvula	U	55M	Acinetobacter	Acinetobacter soli.	AB859739.1	99
F. párvula		56M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula	- <u>-</u> S	57M	Pantoea	Pantoea dispersa	AB273743.1	99
F. párvula		58M		gamma proteobacterium	LC007678.1	92
F. párvula	01	59M	Acinetobacter	Acinetobacter sp	JQ433924.1	99
F. párvula	ADUL	60M	Acinetobacter	Acinetobacter sp	JQ433924.1	99
F. párvula		61M	Acinetobacter	Acinetobacter sp	JQ433924.1	99
F. párvula		62M	Acinetobacter	Acinetobacter sp	GQ478266.1	99
F. párvula		63M	Acinetobacter	Acinetobacter sp	GQ478266.1	99
F. párvula		64M	Acinetobacter	Acinetobacter sp.	JQ433924.1	99
F. párvula		65M	Pantoea	Pantoea cypripedii	KC153127.1	99
F. párvula		66M	Erwinia	Erwinia sp.	KF956604.1	99
F. párvula		67M	Erwinia	Erwinia sp.	HQ154553.1	99
F. párvula		68M	Pantoea	Pantoea dispersa	AB273743.1	99

MORAXELLACEAE

Name	Hits
Acinetobacter baylyi	17023 (87.13%)
Acinetobacter sp.	1058 (5.42%)
Acinetobacter calcoaceticus	606 (3.10%)
Acinetobacter septicus	583 (2.98%)
Acinetobacter sp. 93A2	251 (1.28%)
Acinetobacter sp. P1-6	14 (0.07%)
Acinetobacter rhizosphaerae	1 (0.01%)
Acinetobacter soli	1 (0.01%)

GORDONIACEAE

Name	Hits
Gordonia amarae	1954 (47 02%)
Gordonia sputi	1241 (29.86%)
Gordonia sp. TY-5	677 (16.29%)
Gordonia aichiensis	242 (5.82%)
Gordonia hirsuta	19 (0.46%)
Gordonia rhizosphera	15 (0.36%)
Gordonia jacobaea	3 (0.07%)
Gordonia sp. X20	2 (0.05%)
Gordonia terrae	1 (0.02%)
Gordonia bronchialis	1 (0.02%)
Gordonia rubripertincta	1 (0.02%)

TSUKAMURELLACEAE

Name	Hits
Tsukamurella pulmonis	2798 (91.95%)
Tsukamurella paurometabola	244 (8.02%)
Tsukamurella inchonensis	1 (0.03%)

Name	Hits
Curtobacterium albidum	1223 (99.92%)
Curtobacterium oceanosedimentum	1 (0.08%)

Figura 01.Metagenómas de la microbiota intestinal del estado adulto del "trips del mancha roja del banano" *C. siggnipennis.* Se lograron identificar ciento treinta y nueve especies distribuidas en cincuenta y un familias. Siendo las especies más abundantes: *Acinetobacter baylyi y Acinetobacter sp* (Moraxellaceae), *Tsukamurella pulmonis* (Tsukamurellaceae), *Gordonia amarae y Gordonia sputi* (Gordoniaceae) y *Curtobacterium albidum* (Microbacteriaceae).

Se presenta la lista completa de las bacterias según el metagenóma, familia, especie y abundancia relativa, en el estado adulto de *Ch. siggnipennis*

N°	METAGENOMA	FAMILIA	ESPECIE	ABUNDANCIA
1	ADULTO	Moraxellaceae	Acinetobacter baylyi	17022
2	ADULTO	unclassified (derived from Bacteria)	uncultured bacterium	8204
3	ADULTO	Tsukamurellaceae	Tsukamurella pulmonis	2798
4	ADULTO	Gordoniaceae	Gordonia amarae	1954
5	ADULTO	Gordoniaceae	Gordonia sputi	1241
6	ADULTO	Microbacteriaceae	Curtobacterium albidum	1223
7	ADULTO	Moraxellaceae	Acinetobacter sp.	1069
8	ADULTO	Pseudomonadaceae	Pseudomonas oryzihabitans	930
9	ADULTO	Microbacteriaceae	Glaciibacter superstes	679
10	ADULTO	Nocardiaceae	Rhodococcus rhodnii	679
11	ADULTO	Gordoniaceae	Gordonia sp. TY- 5	677
12	ADULTO	Moraxellaceae	Acinetobacter calcoaceticus	597
13	ADULTO	Moraxellaceae	Acinetobacter septicus	583
14	ADULTO	Enterobacteriaceae	Pantoea ananatis	472
15	ADULTO	Mycobacteriaceae	Mycobacterium salmoniphilum	402
16	ADULTO	Rhizobiaceae	Agrobacterium Iarrymoorei	300
17	ADULTO	Micrococcaceae	Arthrobacter woluwensis	278
18	ADULTO	Intrasporangiaceae	Terrabacter tumescens	256
19	ADULTO	Moraxellaceae	Acinetobacter sp. 93 ^a 2	251
20	ADULTO	Tsukamurellaceae	Tsukamurella paurometabola	244
21	ADULTO	Gordoniaceae	Gordonia aichiensis	242

Tabla 27. Clasificación de bacterias en el estado adulto de C. siggnipennis

22	ADULTO	Mycobacteriaceae	Mycobacterium farcinogenes	241
23	ADULTO	Brevibacteriaceae	Brevibacterium casei	216
24	ADULTO	Enterococcaceae	Enterococcus cecorum	202
25	ADULTO	Bacillaceae	Geobacillus stearothermophil us	177
26	ADULTO	Bacillaceae	Anoxybacillus sp. FB7	164
27	ADULTO	Micrococcaceae	Arthrobacter oxydans	152
28	ADULTO	Methylobacteriaceae	uncultured Methylobacterium sp.	134
29	ADULTO	Microbacteriaceae	Microbacterium hydrocarbonoxyd ans	129
30	ADULTO	Anaplasmataceae	Wolbachia pipientis	112
31	ADULTO	Enterobacteriaceae	Lonsdalea quercina	111
32	ADULTO	Dermabacteraceae	Brachybacterium paraconglomerat um	104
33	ADULTO	unclassified (derived from Alphaproteobacteria)	uncultured alpha proteobacterium	100
34	ADULTO	Nocardioidaceae	Aeromicrobium marinum	98
35	ADULTO	Enterobacteriaceae	Pantoea stewartii	98
36	ADULTO	Microbacteriaceae	Agrococcus jenensis	77
37	ADULTO	Pseudonocardiaceae	Pseudonocardia sp. AL040118-01	72
38	ADULTO	Pseudomonadaceae	Pseudomonas aeruginosa	72
39	ADULTO	Frankiaceae	Frankia sp.	61
40	ADULTO	Nocardiaceae	Nocardia asteroides	59
41	ADULTO	Rhodobacteraceae	Paracoccus sp. R-24652	53
42	ADULTO	Bacillaceae	Bacillus sp. HH- 01	46

43	ADULTO	Aerococcaceae	Aerococcus viridans	44
44	ADULTO	Methylocystaceae	Methylopila capsulata	41
45	ADULTO	Comamonadaceae	Pseudacidovorax intermedius	40
46	ADULTO	Intrasporangiaceae	Serinicoccus marinus	39
47	ADULTO	Staphylococcaceae	Staphylococcus aureus	34
48	ADULTO	Thermomonosporace ae	Actinomadura namibiensis	32
49	ADULTO	Bradyrhizobiaceae	Afipia felis	31
50	ADULTO	Dietziaceae	Dietzia maris	29
51	ADULTO	Micrococcaceae	Nesterenkonia aethiopica	28
52	ADULTO	Bacillaceae	Bacillus sp.	25
53	ADULTO	Micrococcaceae	Micrococcus luteus	24
54	ADULTO	Rhizobiaceae	Agrobacterium vitis	22
55	ADULTO	Nocardioidaceae	Pimelobacter simplex	21
56	ADULTO	Gordoniaceae	Gordonia hirsuta	19
57	ADULTO	Comamonadaceae	uncultured Comamonadacea e bacterium	18
58	ADULTO	Rhizobiaceae	Rhizobium tropici	17
59	ADULTO	Corynebacteriaceae	Corynebacterium singulare	16
60	ADULTO	Gordoniaceae	Gordonia rhizosphera	15
61	ADULTO	Burkholderiaceae	Burkholderia gladioli	15
62	ADULTO	Nocardiaceae	Rhodococcus sp.	14
63	ADULTO	Moraxellaceae	Acinetobacter sp. P1-6	14
64	ADULTO	unclassified (derived from Gammaproteobacteri a)	uncultured gamma proteobacterium	12
65	ADULTO	Microbacteriaceae	Rathayibacter rathayi	11

66	ADULTO	Micrococcaceae	Renibacterium salmoninarum	10
67	ADULTO	Methylobacteriaceae	Methylobacterium aquaticum	10
68	ADULTO	Rubrobacteraceae	Rubrobacter xylanophilus	9
69	ADULTO	Nocardioidaceae	Nocardioides aromaticivorans	8
70	ADULTO	Rhizobiaceae	Rhizobium oryzae	7
71	ADULTO	Mycobacteriaceae	Mycobacterium intracellulare	6
72	ADULTO	Oxalobacteraceae	Herbaspirillum huttiense	6
73	ADULTO	Cellulomonadaceae	Cellulomonas bogoriensis	5
74	ADULTO	Pseudonocardiaceae	Amycolatopsis palatopharyngis	5
75	ADULTO	Bacillaceae	Lysinibacillus sphaericus	5
76	ADULTO	Micrococcaceae	Arthrobacter sp. 'SMCC G965'	4
77	ADULTO	Pseudonocardiaceae	Amycolatopsis coloradensis	4
78	ADULTO	Bacillaceae	Bacillus mycoides	4
79	ADULTO	unclassified (derived from Deltaproteobacteria)	uncultured delta proteobacterium	4
80	ADULTO	Actinomycetaceae	Actinomyces odontolyticus	3
81	ADULTO	Gordoniaceae	Gordonia jacobaea	3
82	ADULTO	Intrasporangiaceae	Janibacter sp. BY48	3
83	ADULTO	Intrasporangiaceae	Terrabacter sp. YK3	3
84	ADULTO	Microbacteriaceae	Microbacterium dextranolyticum	3
85	ADULTO	Gordoniaceae	Gordonia sp. X20	2
86	ADULTO	Kineosporiaceae	Kineococcus aurantiacus	2
87	ADULTO	Microbacteriaceae	Agromyces cerinus	2

88	ADULTO	Micrococcaceae	Kocuria rosea	2
89	ADULTO	Mycobacteriaceae	Mycobacterium gilvum	2
90	ADULTO	Nocardiaceae	Nocardia seriolae	2
91	ADULTO	Nocardiopsaceae	Nocardiopsis metallicus	2
92	ADULTO	Coriobacteriaceae	Atopobium vaginae	2
93	ADULTO	Cytophagaceae	Cytophaga sp.	2
94	ADULTO	Flavobacteriaceae	Chryseobacteriu m formosense	2
95	ADULTO	Bacillaceae	Anoxybacillus flavithermus	2
96	ADULTO	Bacillaceae	Geobacillus thermoglucosidas ius	2
97	ADULTO	Enterococcaceae	Enterococcus italicus	2
98	ADULTO	Acidaminococcaceae	Acidaminococcus fermentans	2
99	ADULTO	Rhizobiaceae	Rhizobium undicola	2
100	ADULTO	unclassified (derived from Betaproteobacteria)	uncultured beta proteobacterium	2
101	ADULTO	Enterobacteriaceae	Cronobacter sakazakii	2
102	ADULTO	Pseudomonadaceae	Pseudomonas pseudoalcaligene s	2
103	ADULTO	Corynebacteriaceae	Corynebacterium renale	1
104	ADULTO	Gordoniaceae	Gordonia bronchialis	1
105	ADULTO	Gordoniaceae	Gordonia rubripertincta	1
106	ADULTO	Gordoniaceae	Gordonia terrae	1
107	ADULTO	Microbacteriaceae	Cryobacterium psychrophilum	1
108	ADULTO	Microbacteriaceae	Curtobacterium oceanosedimentu m	1
109	ADULTO	Microbacteriaceae	Leucobacter komagatae	1

110	ADULTO	Microbacteriaceae	Microbacterium oxydans	1
111	ADULTO	Micrococcaceae	Nesterenkonia halobia	1
112	ADULTO	Micromonosporaceae	Micromonospora chaiyaphumensis	1
113	ADULTO	Mycobacteriaceae	Mycobacterium mucogenicum	1
114	ADULTO	Mycobacteriaceae	Mycobacterium murale	1
115	ADULTO	Nocardioidaceae	Nocardioides sp.	1
116	ADULTO	Nocardioidaceae	Nocardioides sp. JS614	1
117	ADULTO	Thermomonosporace ae	Actinomadura pelletieri	1
118	ADULTO	Tsukamurellaceae	Tsukamurella inchonensis	1
119	ADULTO	Deinococcaceae	Deinococcus deserti	1
120	ADULTO	Bacillaceae	Anoxybacillus sp. HT8	1
121	ADULTO	Bacillaceae	Bacillus megaterium	1
122	ADULTO	Bradyrhizobiaceae	Rhodopseudomo nas palustris	1
123	ADULTO	Rhizobiaceae	Agrobacterium tumefaciens	1
124	ADULTO	Rhizobiaceae	uncultured Agrobacterium sp.	1
125	ADULTO	Anaplasmataceae	Wolbachia endosymbiont of Drosophila willistoni	1
126	ADULTO	Sphingomonadaceae	Sphingomonas sp. M60-VN10- 2W	1
127	ADULTO	Polyangiaceae	Sorangium cellulosum	1
128	ADULTO	Enterobacteriaceae	uncultured Enterobacter sp.	1
129	ADULTO	Enterobacteriaceae	Pantoea agglomerans	1
130	ADULTO	Enterobacteriaceae	Proteus vulgaris	1

131	ADULTO	Enterobacteriaceae	uncultured Serratia sp.	1
132	ADULTO	Enterobacteriaceae	Sodalis glossinidius	1
133	ADULTO	Moraxellaceae	Acinetobacter rhizosphaerae	1
134	ADULTO	Moraxellaceae	Acinetobacter soli	1
135	ADULTO	Pseudomonadaceae	Pseudomonas sp. RW10S2	1
136	ADULTO	Pseudomonadaceae	uncultured Pseudomonas sp.	1
137	ADULTO	Xanthomonadaceae	Stenotrophomona s maltophilia	1
138	ADULTO	Xanthomonadaceae	Xanthomonas translucens	1
139	ADULTO	Opitutaceae	Diplosphaera colitermitum	1

FiURA 02.Metagenóma de la microbiota intestinal del huevo del "trips de la flor del banano" *F. occidentalis*. Se lograron identificar noventiun especies distribuidas en cuarenta y un familias. Siendo las especies más abundantes: *Acinetobacter calcoaceticus, Acinetobacter junii yAcinetobacter rhizosphaerae* (Moraxellaceae), *Elizabethkingia meningoseptica* (Flavobacteriaceae) *Klebsiella pneumoniae, Klebsiella granulomatis, Serratia marcescens, Pantoea agglomerans* (Enterobacteriaceae).

Figura 03. Metagenóma de la microbiota intestinal de estado ninfal del "trips de la flor del banano" *F. occidentalis*. Se lograron identificar sesenta y dos, distribuidas en diecinueve familias. Siendo las especies más abundantes uncultured bacterium (unclassified (derived from Bacteria), *Staphylococcus hominisStaphylococcus haemolyticus, Staphylococcus caprae, Staphylococcus aureus y Staphylococcus lugdunensis* (Staphylococcaceae), *Herbaspirillum sp.* B601 (Oxalobacteraceae), *Anaerococcus vaginalis* (Clostridiales Family XI. Incertae Sedis), *Pseudomonas fluorescens,* uncultured *Pseudomonas sp y Pseudomonas brenneri* (Pseudomonadaceae), uncultured gamma proteobacterium (unclassified derived from Gammaproteobacteria), *Geodermatophilus obscurus* (Geodermatophilaceae), (Staphylococcaceae), *Rothia mucilaginosa* (Micrococcaceae), *Lactococcus*

raffinolactis (Streptococcaceae), (Staphylococcaceae), *Nocardioides aromaticivorans* (Nocardioidaceae), *Yersinia ruckeri* (Enterobacteriaceae).

Figura 04.Metagenóma de la microbiota intestinal de estado Adulto del "trips de la flor del banano" *F. occidentalis.* Se lograron identificar cincuenta y siete especies, distribuidas en veintiséis familias. Siendo las especies más abundantes *Acinetobacter sp* y *Acinetobacter baylyi* (Moraxellaceae), uncultured bacterium y uncultured soil bacterium (unclassified derived from Bacteria), *Pseudomonas fluorescens* y *Pseudomonas monteilii* (Pseudomonadaceae), uncultured gamma proteobacterium (unclassified (derived from Gammaproteobacteria), *Nocardioides aromaticivorans* y *Aeromicrobium marinum* (Nocardioidaceae), *Stenotrophomonas maltophilia* (Xanthomonadaceae), *Ochrobactrum sp. mp-3* (Brucellaceae), *Agromyces sp.*

KY5R(Microbacteriaceae), *Paracoccus sp. R-24652* (Rhodobacteraceae), *Sphingobium yanoikuyae* (Sphingomonadaceae).

Figura 05. Metagenómas de la microbiota del huevo (azul), ninfa (verde) y adulto (rojo) "trips de la flor del banano" *F. occidentalis*. Las especies que se han encontrado en los tres metagenómas son: *Acinetobacter johnsonii, Pseudomonas fluorescens, Serratia marcescens, Stenotrophomonas maltophilia, uncultured*

bacterium, uncultured gamma proteobacterium y uncultured soil bacterium.

Los patrones de asignación al 16S ARNr presentes en la muestra representan el 94.72 % en el metagenóma bacteriano de huevos, 51.74 % en ninfa y 80.70 % en Adulto. Las secuencias unassigned (no asignadas) han sido obtenidas de los productos de amplificación en la PCR en la secuenciación, sin embargo no tienen un patrón de asignación a la región 16S ARNr y representan un 5.06 % en huevo, 45.79 % en Ninfa y 19.28 % en adulto. Secuencias que poseen un patrón de similitud a organismos eucariotas (Eukaryota), y secuencias no clasificadas (unclassified sequences), obtenidas de los productos de amplificación en la PCR en la secuenciación, sin embargo no se pueden clasificar en ningún taxón existente en la base de datos del centro nacional de información biotecnológica (NCBI por sus siglas en ingles).

N°	METAGENOMA	FAMILIA	ESPECIES	ABUNDANCIA
1	HUEVO	unclassified (derived from Bacteria)	uncultured bacterium	29515
2	ADULTO	Moraxellaceae	Acinetobacter sp.	27542
3	NINFA	unclassified (derived	uncultured	22745
		from Bacteria)	bacterium	
4	NINFA	Staphylococcaceae	Staphylococcus hominis	14522
5	ADULTO	unclassified (derived from Bacteria)	uncultured bacterium	6833
6	HUEVO	Moraxellaceae	Acinetobacter calcoaceticus	6474
7	ADULTO	Pseudomonadaceae	Pseudomonas fluorescens	6181
8	NINFA	Staphylococcaceae	Staphylococcus haemolyticus	4613
9	NINFA	Oxalobacteraceae	Herbaspirillum sp. B601	4429
10	HUEVO	Flavobacteriaceae	Elizabethkingia meningoseptica	2841
11	ADULTO	unclassified (derived from Gammaproteobacteria)	uncultured gamma proteobacterium	2768
12	NINFA	Clostridiales Family XI. Incertae Sedis	Anaerococcus vaginalis	2002
13	ADULTO	Pseudomonadaceae	Pseudomonas monteilii	1928
14	NINFA	Pseudomonadaceae	Pseudomonas fluorescens	1135
15	NINFA	unclassified (derived from Gammaproteobacteria)	uncultured gamma proteobacterium	1098
16	ADULTO	unclassified (derived from Bacteria)	uncultured soil bacterium	1095
17	NINFA	Geodermatophilaceae	Geodermatophilu s obscurus	779
18	NINFA	Staphylococcaceae	Staphylococcus caprae	778
19	ADULTO	Moraxellaceae	Acinetobacter baylyi	716
20	NINFA	Micrococcaceae	Rothia	491

Tabla 29. Bacterias según el metagenóma, familia, especie y abundancia relativa en cada muestra (huevo, ninfa y adulto).

			mucilaginosa	
21	NINFA	Streptococcaceae	Lactococcus	422
		-	raffinolactis	
22	ADULTO	Nocardioidaceae	Nocardioides	404
			aromaticivorans	
23	HUEVO	Enterobacteriaceae	Klebsiella	371
			pneumoniae	
24	ADULTO	Nocardioidaceae	Aeromicrobium	368
			marinum	
25	ADULTO	Xanthomonadaceae	Stenotrophomon	365
			as maltophilia	
26	NINFA	Staphylococcaceae	Staphylococcus	363
			aureus	
27	NINFA	Nocardioidaceae	Nocardioides	331
			aromaticivorans	
28	NINFA	Pseudomonadaceae	uncultured	297
			Pseudomonas	
			sp.	
29	NINFA	Staphylococcaceae	Staphylococcus	219
			lugdunensis	
30	HUEVO	Enterobacteriaceae	Klebsiella	213
			granulomatis	
31	ADULTO	Brucellaceae	Ochrobactrum	192
			sp. mp-3	
32	NINFA	Pseudomonadaceae	Pseudomonas	181
		Misushastaviasasa	brenneri	400
33	ADULTO	Microbacteriaceae	Agromyces sp.	180
24		Phodobastaraaaa		125
34	ADULIO	RIDUODACIETACEAE	Paracoccus sp. P-24652	155
35		Enterobacteriaceae	Versinia ruckeri	125
- 36		Moravellaceae	Acinotobactor	125
30	HUEVU	WUTAXEIIaCeae	iunii	110
37		Sphingomonadaceae	Sphingobium	112
57	ADOLIO	Ophingomonadaceae	vanoikuvae	112
38	HUEVO	Enterobacteriaceae	Pantoea	110
00	HOLVO	Enterobacienaceae	agglomerans	110
39	HUEVO	Moraxellaceae	Acinetobacter	109
			rhizosphaerae	
40	HUEVO	Enterobacteriaceae	Serratia	104
			marcescens	
41	NINFA	Pseudomonadaceae	Pseudomonas	92
			putida	
42	ADULTO	Clostridiaceae	Clostridium	85
			sphenoides	

43	ADULTO	Moraxellaceae	Acinetobacter	82
44	ADULTO	Micrococcaceae	Arthrobacter	77
45		Frateriale esteria e e e	agilis	
45	ADULIO	Enterobacteriaceae	Serratia	12
46	HUEVO	Bacillaceae	Anoxybacillus	68
10	HOLVO	Baomacoao	flavithermus	00
47	ADULTO	Gordoniaceae	Gordonia sp. TY-	61
			5	
48	ADULTO	Nocardiaceae	Rhodococcus rhodnii	59
49	HUEVO	Enterobacteriaceae	uncultured	58
			Enterobacteriace	
			ae bacterium	
50	ADULTO	Dermabacteraceae	Brachybacterium	57
			paraconglomerat	
			um	
51	NINFA	Enterobacteriaceae	Serratia	57
		Ctarabada a a a a a a a a	Marcescens	
52	NINFA	Staphylococcaceae	Stapnylococcus	54
53	HUEVO	Moraxellaceae	Acinetobacter sp	
00	HOLVO	WordXellabeac	PD12	40
54	HUEVO	Staphylococcaceae	Staphylococcus	47
			pasteuri	
55	HUEVO	Moraxellaceae	Acinetobacter	46
			baylyi	
56	HUEVO	Paenibacillaceae	Paenibacillus sp.	45
		F uch a staria se a	Han I HS1	
57	HUEVO	Fusobacteriaceae	FUSODACTERIUM	44
58		Alteromonadaceae		36
50	ADOLIO	Alteromonadaceae	Alteromonadacea	50
			e bacterium	
59	HUEVO	unclassified (derived	uncultured	36
00		from	gamma	00
		Gammaproteobacteria)	proteobacterium	
60	ADULTO	Bacillaceae	Bacillus cereus	33
61	HUEVO	Microbacteriaceae	Leifsonia poae	32
62	NINFA	Clostridiales Family XI.	Peptoniphilus	30
		Incertae Sedis	asaccharolyticus	
63	HUEVO	Corynebacteriaceae	Corynebacterium	29
			flavescens	
64	HUEVO	Enterobacteriaceae	Erwinia	29

05		Danssetallanana	amylovora	
65	HUEVO	Prevotellaceae	Prevotella	28
66		Enterchasteriaceae		
00				21
67	ADULTO	unclassified (derived	Exiguobacterium	24
68	HUEVO	Comamonadaceae	Pelomonas	23
		N.A	puraquae	
69	HUEVO	Moraxellaceae	Acinetobacter sp.	21
70			PI-0 Diamaralla an	
70	ADULTO	Flavobacteriaceae		21
71		Pasillassas		20
71	HUEVU	Dacillaceae	Dacillus	20
			annyioiiqueracien	
72	HUEVO	Bacillaceae	Geobacillus	19
12	HOEVO	Daomaocae	stearothermonhil	10
			us	
73	NINFA	Moraxellaceae	Pseudomonas	19
			pavonaceae	
74	ADULTO	unclassified (derived	uncultured beta	19
		from	proteobacterium	
		Betaproteobacteria)	•	
75	HUEVO	unclassified (derived	uncultured beta	18
		from	proteobacterium	
		Betaproteobacteria)		
76	HUEVO	Enterobacteriaceae	Klebsiella sp.	17
			TT001	
77	HUEVO	Spirochaetaceae	Treponema	17
			medium	
78	HUEVO	Moraxellaceae	Acinetobacter	16
			baumannii	
79	HUEVO	Enterococcaceae	Enterococcus	16
00				
80	HUEVO	Methylobacteriaceae	Methylobacteriu	16
04		Decudementedecese	m aqualicum	10
81	NINFA	Pseudomonadaceae	Pseudomonas	16
02		Sphingomonodocooo	Novosphingohiu	15
02	ADULIO	Springomonadaceae	m capsulatum	15
00		Dooudomonodooooo		1 5
03		rseucomonadaceae	r seudomonas fulva	10
Q <i>1</i>		Pseudomonadacoao		15
04		i seudomonadacede	nseudoalcaligene	13
			s	
			J	

85	HUEVO	Moraxellaceae	Acinetobacter	14
86	NINFA	Staphylococcaceae	Staphylococcus piscifermentans	13
87	ADULTO	Pseudomonadaceae	uncultured Pseudomonas sp.	13
88	NINFA	Moraxellaceae	Acinetobacter Iwoffii	12
89	ADULTO	Rhizobiaceae	Agrobacterium vitis	12
90	ADULTO	Bacteroidaceae	Bacteroides salanitronis	12
91	NINFA	Oxalobacteraceae	Herbaspirillum rubrisubalbicans	12
92	HUEVO	Sphingobacteriaceae	Sphingobacteriu m multivorum	12
93	NINFA	unclassified (derived from Proteobacteria)	unidentified proteobacterium	12
94	ADULTO	Moraxellaceae	Acinetobacter johnsonii	10
95	HUEVO	Enterobacteriaceae	Erwinia toletana	10
96	ADULTO	Micrococcaceae	Micrococcus luteus	10
97	NINFA	Nocardioidaceae	Nocardioides sp. IC177	10
98	HUEVO	Prevotellaceae	Prevotella shahii	9
99	NINFA	unclassified (derived from Bacteria)	uncultured soil bacterium	9
100	HUEVO	Pseudomonadaceae	Pseudomonas sp. RW10S2	8
101	ADULTO	Corynebacteriaceae	Corynebacterium macginleyi	7
102	HUEVO	Deinococcaceae	Deinococcus murrayi	7
103	NINFA	Enterobacteriaceae	Erwinia toletana	7
104	HUEVO	Veillonellaceae	Megasphaera elsdenii	7
105	NINFA	Microbacteriaceae	Microbacterium arabinogalactano lyticum	7
106	NINFA	Pseudomonadaceae	Pseudomonas sp. SCD-14b	7
107	HUEVO	Actinomycetaceae	Actinomyces	6

			israelii	
108	HUEVO	Dietziaceae	Dietzia maris	6
109	ADULTO	Enterobacteriaceae	Escherichia coli	6
110	NINFA	Pseudomonadaceae	Pseudomonas plecoglossicida	6
111	NINFA	Pseudomonadaceae	Pseudomonas sp. TM1B2	6
112	NINFA	Pseudomonadaceae	Pseudomonas syringae	6
113	ADULTO	Intrasporangiaceae	Terrabacter sp. YK3	6
114	HUEVO	Moraxellaceae	Acinetobacter sp. 93ª2	5
115	ADULTO	Moraxellaceae	Acinetobacter sp. ADP1	5
116	HUEVO	Neisseriaceae	Eikenella corrodens	5
117	ADULTO	Nocardioidaceae	Nocardioides sp. IC177	5
118	NINFA	Rhodobacteraceae	Paracoccus marcusii	5
119	ADULTO	Pseudomonadaceae	Pseudomonas aeruginosa	5
120	HUEVO	Rubrobacteraceae	Rubrobacter xylanophilus	5
121	HUEVO	Streptococcaceae	Streptococcus anginosus	5
122	HUEVO	unclassified (derived from Bifidobacteriales)	Turicella otitidis	5
123	NINFA	Pseudomonadaceae	Pseudomonas salomonii	4
124	NINFA	Xanthomonadaceae	Stenotrophomon as maltophilia	4
125	HUEVO	Enterobacteriaceae	Citrobacter freundii	3
126	HUEVO	Corynebacteriaceae	Corynebacterium variabile	3
127	HUEVO	Enterobacteriaceae	Cronobacter sakazakii	3
128	HUEVO	Enterobacteriaceae	Erwinia sp. SK- 30-7	3
129	HUEVO	Peptococcaceae	Peptococcus niger	3
130	NINFA	Staphylococcaceae	Staphylococcus succinus	3

131	HUEVO	unclassified (derived from Alphaprotechacteria)	uncultured alpha proteobacterium	3
400			Atopolojum	
132	HUEVO	Coriobacteriaceae	Atopoblum	2
400			minutum	
133	HUEVO	Enterobacteriaceae	Enterobacter	2
			aerogenes	
134	HUEVO	Enterobacteriaceae	Enterobacter	2
			cloacae	
135	NINFA	Oxalobacteraceae	Herbaspirillum	2
			huttiense	
136	HUEVO	Dermacoccaceae	Kytococcus	2
			sedentarius	
137	ADULTO	Pseudomonadaceae	Pseudomonas	2
			cichorii	_
138		Pseudomonadaceae	Pseudomonas	2
100	//DOLIO		extremaustralis	2
400		Describeres de se se		
139	NINFA	Pseudomonadaceae	Pseudomonas	2
			lini	
140	NINFA	Pseudomonadaceae	Pseudomonas	2
			sp. QDA	
141	NINFA	Pseudomonadaceae	Pseudomonas	2
			stutzeri	
142	NINFA	Micrococcaceae	Rothia	2
			dentocariosa	
143	HUEVO	Clostridiales Family XI.	Tissierella sp.	2
		Incertae Sedis	LBN 292	
111	HUEVO	unclassified (derived	uncultured soil	2
144	HOLVO	from Bactoria)	bactorium	2
			Dacterium	
145	NINFA	Moraxellaceae	Acinetobacter	1
			johnsonii	
146	HUEVO	Moraxellaceae	Acinetobacter	1
			septicus	
147	HUEVO	Thermomonosporacea	Actinomadura	1
		е	formosensis	
148	ADULTO	Rhizobiaceae	Agrobacterium	1
			tumefaciens	
149	ADULTO	Microbacteriaceae	Agromyces	1
	100210	merebacteriaceae	luteolus	•
150	HUEVO	Rikenellaceae	Alistines	1
100			finedoldii	
151		Micrococcocc	Arthrobactor	1
151	ADULIU	IVIICI UCUCUACEAE		I
450				A
152	NINFA	wicrococcaceae		1
			nitroguajacolicus	

153	ADULTO	Micrococcaceae	Arthrobacter sp.	1
154	HUEVO	Bacillaceae	Bacillus cereus	1
155	HUEVO	Bacillaceae	Bacillus circulans	1
156	HUEVO	Burkholderiaceae	Burkholderia	1
			pseudomallei	
157	HUEVO	Burkholderiaceae	Burkholderia sp.	1
			TNe-862	
158	HUEVO	Flavobacteriaceae	Chryseobacteriu	1
			m soldanellicola	
159	NINFA	Microbacteriaceae	Clavibacter	1
			michiganensis	
160	HUEVO	Clostridiaceae	Clostridium	1
			bolteae	
161	HUEVO	Corynebacteriaceae	Corynebacterium	1
4.0.0				
162	ADULIO	Corynebacteriaceae	Corynebacterium	1
100				1
163	HUEVU	Corynebacteriaceae	Corynebacterium	I
16/		Comamonadaceae	sp. Delftia	1
104		Comanonadaceae	tsuruhatensis	I
165	NINFA	Enterobacteriaceae	Edwardsiella	1
100		Enteropacionaceae	tarda	·
166	HUEVO	Enterobacteriaceae	Enterobacter	1
			amnigenus	
167	HUEVO	Enterococcaceae	Enterococcus	1
			silesiacus	
168	ADULTO	Enterobacteriaceae	Erwinia	1
			amylovora	
169	HUEVO	Enterobacteriaceae	Escherichia coli	1
170	HUEVO	Enterobacteriaceae	Escherichia	1
			fergusonii	
171	ADULTO	Gordoniaceae	Gordonia	1
			polyisoprenivoran	
170		Entorchastoriassa		
172	HUEVO	Enterobacteriaceae	Hamia aivei	1
173	HUEVO	Enterobacteriaceae	KIEDSIElla	1
171				4
1/4	HUEVU	Laciopacillaceae	ultunensis	1
175	ΝΙΝΕΔ	Microhacteriaceae	Microbacterium	1
175		างแต่เป็นสินเต่แล้นติสินิ	flavescens	I
176	HUEVO	Micrococcaceae	Micrococcus	1
			lylae	1
177	ADULTO	Moraxellaceae	Moraxella	1
	-			=

			osloensis	
178	ADULTO	Nocardioidaceae	Nocardioides sp.	1
179	HUEVO	Clostridiales Family XI. Incertae Sedis	Peptoniphilus harei	1
180	HUEVO	Pseudomonadaceae	Pseudomonas fluorescens	1
181	ADULTO	Pseudomonadaceae	Pseudomonas jessenii	1
182	NINFA	Pseudomonadaceae	Pseudomonas libanensis	1
183	HUEVO	Pseudomonadaceae	Pseudomonas lini	1
184	NINFA	Pseudomonadaceae	Pseudomonas migulae	1
185	NINFA	Pseudomonadaceae	Pseudomonas orvzihabitans	1
186	ADULTO	Pseudomonadaceae	Pseudomonas plecoglossicida	1
187	HUEVO	Pseudomonadaceae	Pseudomonas pseudoalcaligene s	1
188	HUEVO	Pseudomonadaceae	Pseudomonas putida	1
189	NINFA	Pseudomonadaceae	Pseudomonas sp. MFY69	1
190	NINFA	Pseudomonadaceae	Pseudomonas sp. MFY81	1
191	ADULTO	Pseudomonadaceae	Pseudomonas sp. QDA	1
192	ADULTO	Pseudomonadaceae	Pseudomonas sp. RW10S2	1
193	NINFA	unclassified (derived from Proteobacteria)	Pseudomonas sp. SB3	1
194	ADULTO	Pseudomonadaceae	Pseudomonas sp. TM1B2	1
195	NINFA	Pseudomonadaceae	Pseudomonas sp. WR4-28	1
196	HUEVO	Pseudomonadaceae	Pseudomonas stutzeri	1
197	HUEVO	Nocardiaceae	Rhodococcus erythropolis	1
198	HUEVO	Veillonellaceae	Selenomonas ruminantium	1
199	HUEVO	Enterobacteriaceae	Shigella dysenteriae	1

200	HUEVO	Enterobacteriaceae	Shigella flexneri	1
201	NINFA	Staphylococcaceae	Staphylococcus cohnii	1
202	HUEVO	Xanthomonadaceae	Stenotrophomon as maltophilia	1
203	ADULTO	Xanthomonadaceae	Stenotrophomon as rhizophila	1
204	HUEVO	Leptotrichiaceae	Streptobacillus moniliformis	1
205	NINFA	unclassified (derived from Burkholderiales)	Thiomonas sp. CB1	1
206	ADULTO	unclassified (derived from Burkholderiales)	Thiomonas sp. CB1	1
207	HUEVO	Spirochaetaceae	Treponema socranskii	1
208	HUEVO	Spirochaetaceae	Treponema vincentii	1
209	NINFA	unclassified (derived from Firmicutes)	uncultured Firmicutes bacterium	1
210	ADULTO	unclassified (derived from Bacteria)	uncultured rumen bacterium	1

Respecto a la caracterización molecular de la microbiota cultivada a nivel de espectrometría de masas MALDI TOF/TOF, se presentan los picos de espectros de masas del primer tiempo de vuelo (TOF), de cada muestra y las secuencias peptídicas de la fragmentación del ión precursor de los picos representativos de cada muestra (TOF/TOF).

Figura 08. Fragmentos del ion precursor obtenidos por MS MALDI TOF - TOF

Figura 09. Fragmentos del ion precursor obtenido por MS MALDI TOF – TOF.

Figura 10. Fragmentos del ion precursor obtenido por MS MALDI TOF - TOF

Código de muestra: R3 (REPLICA3) caracterizada por gen 16S rRNA (*Serratia marcescens*) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logró la identificación de secuencias de más de 90% de confianza utilizando como Data base: Uniprot-Serratia+marcescens.fasta. En la tabla N°30 se muestra la secuencia de aminoácidos del ion precursor fragmentada por espectrometría de masas MS MALDI TOF-TOF.

Tabla 30. Secuencia de aminoácidos del ion precursor fragmentada por espectrometría de masas MS MALDI TOF-TOF

Spectrum	Time	Prec MW	Prec m/z	Prec z	Prot N	Best Sequence	Modifications	Conf	Theor MW	z
1.B13.8.1.1	0	2061.07	2062.0769	1	2	IHAEVPLSEMFGYATQLR		99	2061.0354	1
1.B13.8.1.2	0	1596.867	1597.874	1	2	IATDPFVGNLTFFR		99	1596.8301	1
1.B13.8.1.12	0	1744.866	1745.873	1	2	YDDAPNNVAQAVIEAR		99	1744.838	1
1.B13.8.1.17	0	3558.557	3559.564	1	2	AINWNEEDAGVTFEYEDVPADMMELAEEWR		99	3558.5232	1
1.B15.8.1.1	0	1956.987	1957.994	1	1	IIELAEALDSYIPEPER		99	1957.0044	1
1.B15.8.1.2	0	1918.953	1919.96	1	1	ELLSAYDFPGDDLPVIR		99	1918.9677	1
1.B15.8.1.4	0	2116.132	2117.1389	1	1	AIDKPFLLPIEDVFSISGR		99	2116.1567	1
1.B15.8.1.5	0	2236.967	2237.9741	1	1	CDMVDDEELLELVEMEVR	Carbamidomethyl©@1, Asp- >Glu@2	99	2236.9902	1
1.B15.8.1.6	0	2728.305	2729.312	1	1	NMITGAAQMDGAILVVAATDGPMPQTR		99	2728.3347	1
1.D16.8.1.8	0	1968.938	1969.9449	1	3	FIEQDPEGQYGLEAAFR		99	1968.9218	1
1.D17.8.1.14	0	2083.998	2085.0049	1	3	GSWLDFEFDPKDNLFVR		99	2084.0002	1
1.D18.8.1.2	0	2061.039	2062.0459	1	2	IHAEVPLSEMFGYATQLR		99	2061.0354	1
1.D20.8.1.5	0	1918.95	1919.957	1	1	ELLSAYDFPGDDLPVIR		99	1918.9677	1
1.D20.8.1.7	0	1956.984	1957.991	1	1	IIELAEALDSYIPEPER		99	1957.0044	1
1.D20.8.1.11	0	2236.964	2237.9709	1	1	CDMVDDEELLELVEMEVR	Carbamidomethyl©@1, Asp- >Glu@5	99	2236.9902	1
1.D21.8.1.4	0	1918.951	1919.958	1	1	ELLSAYDFPGDDLPVIR		99	1918.9677	1
1.D21.8.1.7	0	1956.981	1957.988	1	1	IIELAEALDSYIPEPER		99	1957.0044	1
1.D21.8.1.8	0	2728.346	2729.353	1	1	NMITGAAQMDGAILVVAATDGPMPQTR		99	2728.3347	1

Figura 11. Detección de proteínas – group 1. Elongation factor Tu OS= Serratia marcescens SM39 GN=yufB PE=3 SV=1

Figura 12. Figura 11. Detección de proteínas – group 1. Elongation factor G OS= Serratia marcescens SM39 GN=fusA PE=4 SV=1

Workflow Tasks	Protein ID	Spectra	Summary Statistics
Identify Proteins	Proteins Detected		
LC	N Unused Total % Cov Accessio Name	Species Peptides(95%) Biological Processes Molecular Functions	ANTHER ID
Spot-Based (MS only)	1 10.00 10.00 31.2 tr/M0T1J Elongation factor Tu OS=Serratia marcescens	ns S SERMA 6	
Epot Record (ME and MEME)	2 8.00 8.00 13.9 thAUAUG Elongation factor of US-Serratia mandescens 3 3.92 3.92 4.6 tr/MOSY8 DNA-directed RNA polymerase subunit beta (a OS SERMA 4	
spocoaseu (ma anu manna)			
View			
Analysis Log			
Result			
Export			
Peptide Summary	Protein Group 2 - Elongation factor G OS-Serratia marcescens GN-fusA PE	E-4 SV-1	
Protein Summary	Proteins in Group		Peptides in Group
· · ·	2 8.00 8.00 tr /A0A0G Elongation factor G SERMA	2.00 99 AINWNEEDAGVTFEYEDVP	Lieavages Zwass Prec ww z Sc Spectrum Type 0.0333 3558.55 1 5 1.B13.8.1.17 Win
	0.00 6.61 bt/W0SX Elongation factor G O SERMA	2.00 99 IATD PFVGNLTFFR	0.0365 1596.86 1 5 1.B13.8.1.2 Win
	0.00 6.61 blL7ZRG Elongation factor G O SERMA	2.00 99 IHAEVPLSEMFGYATQLR	0.0035 2081.03 1 5 1.D18.8.1.2 Win
	0.00 6.61 tr[A0A0G Elongation factor G O SERMA	2.00 99 YDDAPHNVAQAVIEAR	0.0273 1744.86 1 4 1.B13.81.12 Win
	0.00 E.ET blackop. Exangation factor G.U SEMINA	0.00 3.5 IATD PFVGNLTFFR	-0.0016 1595821 3 1.01831.10 Wm
	0.00 6.01 M/OMMA Examples factor & O. SERMA	0.00 <1 IGNUED CANTROLOGY D	-0.003 136621 3 1.0130.14 With.
	0.00 COO CLONARCE LONGEDURATOR C.C. CLEMAN	0.00 <1 IGEVID GAATNDIMEGEGER	0.011 233100 1 3 1019819 Wh
		0.00 99 IHAE VP LSENF GYATOLR	0.0348 2061.06 1 7 1.B13.8.1.1 Win
		0.00 <1 THAE VP LSEMF GYATOLR	0.0052 2061.04 1 3 1.019.8.1.1 Win
		0.00 <1 YDDAPHNVAQAVIEAR	-0.0099 1744.82 1 3 1.D19.8.1.11 Win
		0.00 99 AINWHEEDAGVTFEYEDVP., Asp->Glu@24	0.0333 3558.55 1 5 1.B13.8.1.17 Other
		0.00 < 1 LGEVHD GAATNDUNE QEQER	0.0339 2331.02 1 3 1.B138.1.8 Other
		0.00 <1 LGEVHD GAATNDUNEQEQER	0.0117 2331.00 1 3 1.D19.8.1.9 Other
	Protein Sequence Coverage - Elongation factor G OS=Serratia marcescens	is GN=fusA PE=4 SV=1	
	NARTTRIARYRNIGISANIDAGYTTTTERILEYTGYGNETGENEDGAATURENEGE	PGITITS LATTAENSON & KOREPHDWATIDTPGHUDETIEUR PSNDW. DG MUR	WY ANG MODO STUDD ANKWERDS TA STANKINDENG AND LEADING TO THE AND WELD LA THE STORE THE WEATHING THE STORE THE STORE THE STORE THE STORE THE STORE ST
	DVPADMMELAEEWR ONLIESAAEASEELMEKYLGGEELTEAEIKSALRORVLNNEIILV	LVTCGSAFKNKGVQAHLDAVIEYLPAPTDVPAINGILDDGKDTPAERHASDDEF	FALAF N IAT DEFVOIL TER V YSGV WIGD TVLNS WAARERF GRIV OHIANKREE I KEVRAGD I AAAI GLKDV TIGD TLCD PDBP I ILERME
	FPEPVISIAVEPKTKADQEKMGLALGRLAKEDPSFRVWTDEESNQTIIAGMGELHLDI:	IIVDRHKREFNVE ANVGKPQVA YRE A IRAKITDVEGKHAKQSGGRGQYGHVVID	MYPLEPGSNPKGYEFINDIKGGVIPGEYIPAVDKGIQEQLKSGPLAGYPVVDMGIRLHFGSYHDVDSSELAFKLAASIAFKEGFKKAKPVLLEP
	INKVEVETPEENTGDVIGDLSRRRGHLRGQESEVTGVK IHAEVPLSENFGYATQLR SL	ltkgrasytheflk yddaphnvaqaviear gk	

Figura 13. Detección de proteínas – group 3. DNA RNA polymerase subunit beta OS = Serratia marcescens SM39 GN=rpoB PE=3 SV=1

Workflow Tasks	Proteia ID Spectra Summary Statistics											
Identify Proteins	Proteins Detected											
LC	N Unused Total 5: Cor Accession. Name Species/Peptides(95%) Biological Processes Molecular Functions PAITTRR D											
Spot-Based (MS only)	1 1000 1000 312 [19/011.] Boyglaton table 1/u 00-Sensitia mercensore S. SEMA 6											
Sout-Read (MS and MS MS)	2 000 e 00 153 [I]pLADA Bragaton Interformance Substance Control (1998) 4 4 3 359 512 45 [I]pLADA Bragaton Interformance Substant Bragaton (2005) 595MA 2											
Spot dasted (all and assumption												
view												
Analysis Log												
Result												
Export	Protein Group 3 - DNA-directed RNA polymerase subunit beta OS-Serratia marcescens SM39 GN-rpoB PE-3 SV-1											
Peptide Summary	Potoini inform Potoini inform											
Protein Summary	If Unused Total Accession Name Species Con* Conf. * Sequence Modifications Clearages ZMAns Prevent Type											
	3 3.22 3.32 1.03 1.04/meterid fills p SIMMA 2.86 99 PT1200PESGOETLABER 8.04(4) 198.33 1 4.10/m.4.1.8 Wm 3 0.49 3.29 1.12/m. IMAGet Bills A 51/m 1.20 99 C01.04/m.PP MORE PVD 0.4029 P01.39.1.1 1 3.10/m.1.4 Wm											
	3 6.49 2.52 U.S.MMS DBA-durected HIA.p SEPMA 6.0 4 V PIERPEROVICIEARY 6.0.0 4 2.10 PIERPEROVICIEARY 6.0.0 4 2.10 PIERPEROVICIEARY 6.0.0 4 2.10 PIERPEROVICIEARY 6.0.0 4 4 0.00 PIERPEROVICIEARY 6.0.0 4 4 0.00 PIERPEROVICIEARY 6.0.0 4 4 0.00 PIERPEROVICIEARY 6.0.0 PIERPER											
	2 0.00 3.22 19/AMF [DIA/detected PIIA.p SFMAA 0.00 91.2] (SSLB01727 PROBLEY R 0.042) 284545 [1 2] L011.5.1.52 Wm 2 0.04 3.20 19/AMM [DIA/detected PIIA.p SFMAA 0.09 91.2] (SSLB01727 PROBLEY R 0.042) 284545 [1 2] L011.5.1.52 Wm											
	0.00 < 1 INFEDENCEMENT PVD1V. 0 84038 2063.95. 1 3 L914.8.1.33 Win											
	Protein Sequence Coverage - DNA-directed RNA polymerase subunit beta OS-Serratia marcescens SM39 GN-rpaB PE-3 SV-1											
	WY BY TEKKE IRED FOR DOULD I PULLS I CLOST OF TE OPT CONSIGNATION OF TO SUBJECT VISION CONSTRUCTION OF TO SUBJECT VISION CONSTRUCTOR OF TO SUBJECT VISION CONSTRUCTOR OF TO SUBJECT VISION CONSTRUCTOR VISION CONSTRUCTOR OF TO SUBJECT VISION CONSTRUCTOR VISION CONSTRUCTOR VISION CONSTRUCTOR VISION CONSTRUCTOR VISI	LDFEFDFKDNLFVR IDRRRKLP										
	ATTILBALMYTECILLEFORUWYTENNE, OETASED TEANSTVEKOBETABETOUCHDU TOWNOAD TANTEN ANTEN	FFSEDRYDLSAVGRMEFNRSLL WRDGVVTDEINYLSAIEEGNFV										
	LOADING DECOVED VTCRSSCEREL FEBOUT REVOTOOV970AL FFLERD AND LIGANICOLUTE TRANSPORT FOR AUXIONATION OF VIOLATE AND AUXIONATION AND AUXIONATION AND AUXIONATION AND AUXIONATION AND AUXIONATION AUXIONATION AUXIONATION AUXIONATION AUXIONATION AUXIONATION AUXIONATION AUXIONATION AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONATIONALI AUXIONALI AUXI	NERVAFEPUNGYNFEDSILVSE DEEKONOLKOLAEOYDELKSDF										
	TRUE AS A DESCRIPTION OF THE OWNER A											
	M.R.IMMLVDGHRMARTOSYDJYTQSPLOGOLOFOQOFOCHNYWALEAYGAYYTQGHRJYTWSYDGOHRMEFORPESYNVLLEEIDSLGHITLEDE											

Código de muestra: 10M R2 (REPLICA) caracterizada por gen 16S rRNA (Serratia marcescens) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-chitinase+serratia.fasta.

En la tabla 32 se muestra la secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

Tabla 32. Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

Spectrum	Time	Prec MW	Prec m/z	Prec z	Prot N	Best Sequence	Modifications	Conf	Theor MW	z
1.B13.8.1.1	0	2061.0696	2062.0769	1	1	YKKLHAAGKEQEANEFR	Carbamyl@N- term	99	2061.039	1
1.B15.8.1.2	0	1918.9526	1919.96	1		ELIKLSGSVTVGETPVIR	Cation:Na(E)@13	99	1919.07	1
1.B13.8.1.2	0	1596.8667	1597.874	1		WTLLFEKVSGVFR	Phe->Tyr@5	98.7	1596.867	1

Figura 14. Detección de proteínas – group 1. N-acetyl-betaglucosamidase OS= Serratia marcescens GN=ctb PE=4 SV=1

Workflow Tasks	Protein ID Spectra Summary Statistics
Identify Proteins	Proteins Detected
LC	B Unused Total N.Co Accession. Name Species Peptidea(955) BiologicalProcesses (Minecule Functions PAITHER D
Spot-Based (MS only)	1 2.00 1.0 [Inf/Hite]. Received-tens-0.gacosamendase CI-Cerratin. (2014) 1
Spot-Based (MS and MS/MS)	
View	
Analysis Log	
Result	
Export Pantide Summany	Protein Group 1 - N-acetyl-beta-D-glucosaminidase 05-Serratia marcescens GN-eth PE-4 SV-1
Protein Summary	Proteins in Group Peptides in Group
	B Unwared Total Accession. Barne Species Con. Cold Sequence Modification Clewargie Alme Prev WV z 5c Spectrum Type 1 ZAG UT 17755. Sized/stets-0.gut, STMAA 226 00 19XXI.LARZORETEY C Carbon/githurem missect KA, Stable 2014 UTAL.
	6.60 22.8 [3352.134.0420[2180278] Carbiory/0341cm missed/K.K., 4.600 2061.8, 1 2 1.0118.5.2 Win
	Particle Courses - Named Astronomic March 2015 - Second courses and March 2014 2014
	Protein Sequence Loverage - Raceyl setus Julicosaminatas US-Serrata manacesces Un-Corp (*4 SP-1
	TO BE ALL RECEIPTING THE ALL RECEIPTING ALL RECEIPTING ALL ADDRESS OF THE DESCRIPTION OF THE DESCRIPTION OF ALL RECEIPTING ALL
	DOOLS A SERVICE AT LEVEL OF THE OWNER PROVIDED TO THE PERFORMANCE AND THE OWNER PERFORMANCE AND

Código de muestra: 10M R2 (REPLICA) R3 (REPLICA3) caracterizada por gen 16S rRNA (Serratia marcescens) Con el ProteinPilot™ Software 4.0, Paragon™ Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-TSWV.fasta.

				Prec	Prot					
Spectrum	Time	Prec MW	Prec m/z	Z	Ν	Best Sequence	Modifications	Conf	Theor MW	z
1.B13.8.1.1	0	2061.0696	2062.0769	1	2	SLEEVKDSVSSSSYLQMR	Deamidated(Q)@16, Oxidation(M)@17	99	2060.9573	1
1.B15.8.1.1	0	1956.9867	1957.994	1	1	LSILLFRATDAKVEIIR		99	1957.1725	1
1.B15.8.1.5	0	2236.9668	2237.9741	1	1	SKIEDDDDLEIKEPMMVR	Ser->Asn@1, Oxidation(P)@14, Oxidation(M)@15, Oxidation(M)@16	99	2237.019	1
1.B11.8.1.44	0	791.4619	792.4692	1		TSGTPSSR		< 1	791.3773	1
1.B15.8.1.2	0	1918.9526	1919.96	1	2	IKPKQRSEVEIDHALR	Deamidated(Q)@5	< 1	1919.0588	1
1.B15.8.1.9	0	1802.8586	1803.866	1	2	NISYVGQIVGTTPTVVR		< 1	1802.989	1
1.B15.8.1.20	0	2681.1658	2682.1731	1		LMLSTTSVENESSDDYIEPHDGR	Propionamide@N-term, Oxidation(M)@2	< 1	2681.1763	1
1.B19.8.1.8	0	1065.5967	1066.604	1		YSGNKVYGR	Tyr->Trp@7	< 1	1065.5355	1
1.B21.8.1.4	0	2219.0286	2220.0359	1		GANKYNITMFCSANPDKKK	Oxidation(M)@9, Carbamidomethyl©@11, Deamidated(N)@14, Oxidation(P)@15	< 1	2219.0352	1

En la tabla 33 se muestra la secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF

Figura 15. Detección de proteínas – group 1. Glycoprotein OS= Tomato spotted wilt virus (strain Brazilian Br-03) GN=GP PE=4 SV=1

Workflow Tasks	Pr	rotein ID			Spectra		Summary Statistics								
Identify Proteins	Proteins Detected														
LC	N Unused Total % Cov Accessio.	Name S	Species Peptides(95	%) Biological Processes	Molecular Functions	PANTHER ID									
Spot-Based (MS only)	1 2.42 2.42 3.1 tri06720 2 2.00 2.00 1.8 tri60609	Glycoprotein OS=Tomato spotted witt virus (strai RNA solumenese OS=Tomato spotted witt virus Oble	TSWV3	2											
Spot-Based (MS and MS/MS)	3 2.00 2.00 8.0 trjE1Y4Z	NSm non-structural protein (Fragment) OS=Tom	TSWV	1											
View															
Analysis Log															
Dentifi															
Result															
Dentide Summany	Protein Group 1 - Glycoprotein OS=Tomato spotted wilt virus (strain Brazilian Br														
Pepude summary	Protei	ns in Group					Peptides in Group								
Protein Summary	N Unused Total Accessio	Name Species	Con∇ Conf ∇ 2.00 99 1.5	Sequence /	Modifications	Cleavages	△Mass Prec MW z Sc Spectrum / Type 								
	1 0.00 2.42 tr Q672G Glyco	protein OS=To TSWVS	0.42 99 SF	KIEDDDDLEIKEPHMVR	Ser->Asn@1 Oxidation(P)@14	missed K-L	-0.0528 2236.96 1 5 1.B15.8.1.5 Win								
					Oxidation(M)@15 Oxidation(M)@16										
	Protein Sequence Coverage - Glycop	rotein OS=Tomato spotted wilt virus (strain	Brazilian Br-03) G	N=GP PE=4 SV=2											
	WELTKLELMIKLSLEATALSSVILSTIL	FRATDAKVETTRGDHLETYDDSSENEVSTTSLHI	RRTUPEVI.PNGNER	AHSDESSTERAFEOAPT	LODETSSEKAVSIOE	VPNNCLNASLE	CFTKGUSTYNUVYOUFSNGUTYSCUSDSADNI.GBCDNSONI.PKKEPETPUTPTTKI.DNKRHESUGTKEFTTENI.ASGNYPUSYNI.								
	HQTEGIVSLQTVKLSGDCKITKSNFANPY	TVSITSPEKINGVIIKRPGEDGENKVNAFSGSVS	ITFSEEHLDGNHNL	LCGDKSAKIPKTNKRVP	DCIIKYSKSIYKQTA	CINFSWIRLIL	IALL 1YFP IRVLUNKTTKPLFLUYDL IGL ITYPLLL ILNYLWKYFPFKCANCGNLC IVTHECTKKCICNKSKASREHFSECFILS DWTTFICDL CCFVLFLEDANDI ENGEL DYTGEL CLTA SLYWFYDLDMCI DSYNWTTFTEGUACDSL CONSTATISTEDIU DD								
	QSLIFDSIVEGKYRYHIEQSLLGGGGTVF	MLNDKTSGAAKKFTIVIRSTGIHVEVSEKVTTAP	INSTHIDYYSTOTO	RCDTCRKNQALTGFQDF	CITPTSYNGCEEAUCI	FAINEGATCGF	AD IT IRKEDGE I DEDI NAK DI NAT DE LI 1953 DO LI SALO ITI RELANOTI DE INVIDUCE DE LI ALCONTROLETA LE PRIMER RE CRIVVDIDES VRIVSVEKSTI ADVCISCI LODOCTKI TE EVP VENSVE QADI QAD LI QAD LI DE LI ALCOPENTI ANEN ANTONI DE LI DE								
	EYAHEEQQYNSDSSAWGFWDYIKSPFNFV	ASYFGSFFDTIRVILLIAFIFLVIYLCSMLVSMC	RGYVKNGSYKIR SB	CIEDDDDLEIKEPHNVRD	TMTRRRPPMDFSHLV	EUNGCLLUGKG.	"2006 F122 PPAL212 P202 P22 LOTXAKO20K LUT LULC2ANA DKKYTKULAFONA 5 P22 FAA TU LAAAKDA 500 TID GAD								

Figura 16. Detección de proteínas – group 2. RNA POLYMERASE OS= Tomato spotted wilt virus GN=RdRp PE=4 SV=1

Figura 17. Detección de proteínas – group 3. NSmnon structural protein (Fragment)OS= Tomato spoted wilt virus GN=NSm PE=3 SV=1

Código de muestra: 35M R2 (REPLICA 2) R3 (REPLICA3) caracterizada por gen 16S rRNA (Acinetobacter baylyi) Con el ProteinPilot™ Software 4.0, Paragon™ Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logró la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Acinetobacter+baylyi%2C.fasta.

En la tabla N°1 se muestra la secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

Tabla 34. Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

Spectrum	Time	Prec MW	Prec m/z	Prec z	Prot N	Best Sequence	Modifications	Conf	Theor MW	Z
1.B19.8.1.3	0	2053.053	2054.0601	1	1	INVIDTPGHVDFTIEVER		99	2053.0481	1
1.B19.8.1.6	0	2181.963	2182.97	1	1	VEVETPEDYMGDIMGDLNR		99	2181.9558	1
1.B19.8.1.8	0	1065.597	1066.604	1	3	AMQATMLER	Oxidation(M)@2	99	1065.4948	1
1.B21.8.1.1	0	1680.863	1681.87	1	2	AFLMPIEDVFSISGR		99	1680.8545	1
1.B21.8.1.2	0	1936.947	1937.954	1	2	ELLSTYDFPGDDTPVIR		99	1936.9418	1
1.B21.8.1.4	0	2219.029	2220.0359	1	2	CDLVDDEELLELVEMEVR	Carbamidomethyl©@1, Asp->Glu@5	99	2219.0337	1
1.D24.8.1.2	0	2123.997	2125.0039	1	1	FEYADIPADLVDTSNEWR	Ser->Ala@14	99	2123.98	1
1.D24.8.1.3	0	1812.867	1813.874	1	1	AEVPLAEMFGYATQMR		99	1812.8539	1
1.E1.8.1.4	0	1812.878	1813.885	1	1	AEVPLAEMFGYATQMR		99	1812.8539	1
1.E2.8.1.6	0	1680.886	1681.8929	1	2	AFLMPIEDVFSISGR		99	1680.8545	1
1.E3.8.1.9	0	1680.89	1681.897	1	2	AFLMPIEDVFSISGR		99	1680.8545	1
1.E1.8.1.3	0	2124.011	2125.0181	1		AVPIHQHFSLKISSWR	Oxidation(P)@3, HexNAc(S)@9	84.3	2124.1116	1
1.B19.8.1.2	0	2123.983	2124.99	1		AVPIHQHFSLKISSWR	Oxidation(P)@3, HexNAc(S)@9	78.3	2124.1116	1
1.E3.8.1.1	0	1942.02	1943.027	1	2	HTPFLNGYRPQFYFR		72.7	1941.9639	1
1.E2.8.1.1	0	1942.019	1943.026	1	2	HTPFLNGYRPQFYFR		61.3	1941.9639	1
1.B19.8.1.4	0	2331.003	2332.01	1	1	IGEVHDGAATMDWMEQEQER		58.6	2330.9895	1
1.D24.8.1.5	0	2672.24	2673.2471	1		PQLDNFAETETIQNDAAMDEQHR		35.2	2672.1772	1
1.D23.8.1.10	0	2362.099	2363.106	1		MAFEHGEPVAPLEVLAGKAPKR	Oxidation(M)@1	29.4	2362.2468	1
1.D24.8.1.7	0	2330.998	2332.0049	1	1	IGEVHDGAATMDWMEQEQER		28.1	2330.9895	1
1.B21.8.1.12	0	1781.803	1782.8101	1		IEGNAMQYSTESSIPR		9.2	1781.8254	1

Figura 18. Detección de proteínas – group 2. Elongation factor Tu OS=Acinetobacter baylyi(strain ATCC33305 / BD413 /ADP1) GN=tuf1 PE=3 SV=1

Workflow Tasks	ſ			_				Protei	n ID								Spectra									Summary Statistics	
Identify Proteins		Pro	teins Det	ected																							
LC		•	Unuse	d Tota	al !	% Cov	Access	io	_		Name	:	Species	Peptide	s(95%)	Biological Processes	Molecular Functi	ons P.	ANTHER ID								٦
Spot-Based (MS only)			1 8.3	8.	.38	17.1	sp)Q6FI sp)Q6FI) Bo	ingation fac	ctor G CS	S=Acinetobacter bay	rtyi (str	ACIAD		4												
Spot-Based (MS and MS/MS)			3 1.7	4 1.7	.74	5.6	tr/G6FD	C Pe	ptide defor	mylase (OS=Acinetobacter ba	aytyi (s	ACIAD		1												
View																											
Analysis Log																											
Pesult																											
Export				_	_	_	_			_				_	_							_	_		_		_
Pentide Summary		Pro	tein Groi	лр 2 - E	Elong	gation	factor	Tu OS	-Acinete	obacter	r baylyi (strain A	ATCC 333	805 / BE	413 / A	DP1) G	GN=tuf1 PE=3 SV=1										G	3
Pedala Gummarya.					_		Prot	eins in	Group	_											Peptid	es in Gr	roup				٦I
Protein Summary		,	2 5.8	d Tota 2 5.	al A	Accessii sp Q6FF	> Elo	Na ngation	me factor Tu.	ACI	Species AD		Con 7	Conf 9	AFLN	Sequence PIEDVFSISGR	Modificatio	15 🗠	Cleavages	∆Mass 0.0087	Prec M 1680.86	W z	Sc 7	Spectrum 1.821.8.1.1	 Type Win 	e	
				_	_			-					2.00	9	ELLS	TYDEPGDDTPVIR				0.0051	1936.94	L., 1	6	1.821.8.1.2	Win.		
													1.43	9	CDLV	DDEELLELVENE VR	Carbamidome @1 Asn.≥Glu@5	hyd(C)		-0.0049	2219.02	1	6	1.821.8.1.4	Win		
													0.39	72.	HT PF	LNGYRPQFYFR	Hap-> Glugs			0.0561	1942.01	1	4	1.E3.8.1.1	Win.		
													0.00	9	AFLN AFLN	PIEDVFSISGR				0.0313	1680.88	L 1	5	1.E2.8.1.6	Win		
													0.00	<	GITI	INT SHVEYDSP IR				0.0014	1800.90	1	3	1.821.8.1.3	Win		
													0.00	61.:	HT PF	LNGYRPQFYFR			de sus diffe	0.0544	1942.01	1	4	1.E2.8.1.1	Win.	<u>.</u>	
													0.00		PUPY	LEIK			cleaved R	-0.0000	000.42	24 1	3	1.021.0.1.9	win	<u></u>	
					_																						_
		Pro	tein Sea	uence	Cov	rerade	- Elon	ation	factor Ti	u 05-#	Acinetobacter ba	vlvi (stra	ain ATC	C 3330	5 / BD4	13 / ADP1) GN-tuf	1 PE-3 SV-1										
		w.	VIVEFDS	PDWUM	NGT	TGWD	HOUTT	TAAT	ATTCART	VCCEA	VDVCOTDCADEF.	PARGITI	MTRM	TADED	DUVIU	NDC DOBAD SUMMI	TGELOWDGELLU	AATDG	DWDOTDEWII	1 SBCM	UD V TUR	IRI MR	CDIN	DDFFI I FI S	FMFUD	DEVICTOR DEDUTDCENTENT CONCERSUMENTED	10
		ER	RIDEAFL	MP IED.	VFS:	ISGRG	TVVTG	RVEAG	IVEVGES	SVEIVG	IRDTQTTTVTGV	EMFRELL	DEGRA	GENCGV	LLRGT	TKREDVQRGQVLAKP	GTIKPHTKFDAE	YVLSK	EEGGRHTPFL	NGYRPO	FYFRT	FDVTG.	AIQL	KEGVENVHI	GDNVE	EMSVELIHPIANDPGLRFAIREGGRTVGAGVVAKVTA	1

Figura 19. Detección de proteínas – group 3. Peptide deformylase OS= Acinetobacterbaylyi (strain atcc33305 / BD 413 / ADP1)GN=DEF PE=3 SV=1

Workflow Tasks	Pretein ID Spectra Summary Statistics	
Identify Proteins	Proteins Detected	
LC	R Unused Total % Cov Accession. Name Special Peptidos(\$5%) Biological Processes Molecular Functions PARTIER.D	
Spot-Based (MS only)	1 8.38 0.38 1.73 193070- Brogolom tecto o Cols-Antenbacter trays(ctr., ACAO 4	
Spot-Based (MS and MS-MS)	3 174 174 5.6 tr/0/0C. Piglide entrimylaar 60-Acristicateder teistyl (a. ACMO 1	
View		
Analysis Log		
Result		
Export	Protein Group 3 - Peptide deformyfase OS-Acinetobacter baylyi (btrain ATCC 33305 / BD113 / ADP1) GH-def PE-3 SV-1	
Peptide Summary	Proteins in Group Peptides in Group	
Protein Summary	B Ubuved Tatal Accession. Batter Section Sciences Con., 1 Cont 7 Segurates 7 Cleanges JAhnes Proc BW/ z 5 5 Section 7 Type 3 1541 212 10289. National Section 2 Section 7 December 2 Section 7 Decem	
	Protein Sequence Coverage - Peptide deformylaxe 05-Acinetobacter baylyi (btrain ATCC 33305 / BD413 / ADP1) GN-def PE-3 SV-1	
	RETVLTVARKGEILELMAAPVEGEFDERLOOLVV ANGATHLEN GVOILANGITVISHIRTIVASHINNIYE DAPERGIVVEINPEITHIJEELGEEGCLEVPEGROVEINPENGVEIDUUUVTDEGGGLIEGEPREPARTVOREIDULUUVIPUBLI	

Código de muestra: 35M R2 (REPLICA 2) R3 (REPLICA3) caracterizada por gen 16S rRNA (Acinetobacter baylyi) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Acinetobacter+soli.fasta.

En la tabla 35 se muestra la secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF

Figura 20. Detección de proteínas – group 1. Elongation factor G OS Acinetobacter soli NIPH 2989 GN=fusA PE=3 SV=1

Figura 21. Detección de proteínas – group 2. Elongation factor Tu OS Acinetobacter soli NIPH 2989 GN=tuf PE=3 SV=1

Workflow Tasks	Protein ID	Spectra	Summary Statistics											
Identify Proteins	Proteins Detected													
LC	N Unused Total % Cov Accessio Name Spa	es Peptides(95%) Biological Processes Molecular Functions PANTHER ID												
Spot-Based (MS only)	1 7.50 7.50 15.0 tr/NBM/ Biorgation factor 0 OS+Acinetobacter soil MPH 90, 2 5.44 5.44 18.2 tr/NBAI22 Biorgation factor Tu OS+Acinetobacter soil MPH 90,	6/ 3 6/ 4												
Spot-Based (MS and MS-MS)	3 3.81 3.81 11.1 tr/NSAF7 Outer membrane protein omp38 0S+Acinetobac 904	RA 2												
View														
Analysis Log														
Result														
Export														
Peptide Summary	Protein Group 2 - Elongation factor Tu OS-Acinetobacter soli NIPH 2899 GN-tuf PE-	SV-1												
Protein Summary	N Unused Total Accessio Name Species Co	Pepti ∇ Conf ∇ Sequence Z Modifications Z Cleavages ΔMass Prec	MW z Sc Spectrum / Type											
	2 5.44 5.44 tr N9AI2 Elongation factor Tu 9GAMM	0.00 99 AFLMPTEDVPSISGR 0.0007 1680.	86 1 7 1.021.0.1.1 Win 94 1 6 1.821.8.1.2 Win											
		.22 96.1 GITINTSN/EYDSPIR 0.0014 1000.	90 1 3 1.821.8.1.3 Win											
		3.22 39 CDLVDDFELLELVENEVR Carbamidomethyl(C) -0.0049 2219. (21 Amp->Glu25												
		1.00 <1 POFYER Cleaved R0.0008 856.	4224 1 3 1.821.8.1.9 Win											
	Protein Sequence Coverage - Elongation factor Tu OS=Acinetobacter soli NIPH 289	GN=tuf PE=3 SV=1												
	MARAKFERNKPHVNVGTIGHVDHGKTTLTAAIATICAKTYGGEAKDYSQIDSAPEEKAFGITINT	NVEYDSPIRHYARVDCPGHADYVRNHITGAAQHDGAILVCAATDGPNPQTREHILLSRQVGVPYI	VVFLMK CDLVDDEELLELVEHEVRELLSTYDFFGDDTPVIR GSALAALNGDAGQYGEPEVLALVEALDEYIPEP											
	ERAIDEAFINFIEDVFSISGRGTVVTGEVEAGIVEVGESVEIVGIRDTQTTTVTGVENFRELLDE	RAGENCGVLLRGTKREDVQRGQVLAKPGTIKPHTKFDAEVYVLSKEEGGRHTPFLNGYR PQFYFR	TTDVTGAIQLQDGVENVNPGDNVENSVELIHPIANDPGLRFAIREGGRTVGAGVVAKVTA											

Código de muestra: CO-CULTIVO T.A R6, R5 (thrips amarillo replica cinco, seis) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Acinetobacter+baylyi%2C.fasta.

Tabla 35. Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

					Prot					
Spectrum	Time	Prec MW	Prec m/z	Prec z	N	Best Sequence Modification		Conf	Theor MW	Z
1.C21.8.1.7	0	2570.3638	2571.3711	1	1	LENDVRVETTLHQNTRIYDVR		99	2570.3201	1
1.F1.10.1.12	0	1846.9717	1847.979	1	2	RAMGKKKPEEMVKQR	Oxidation(M)@3, Oxidation(M)@11	96.4	1846.9869	1
1.C19.8.1.6	0	1162.6456	1163.653	1		DEWVAPGHPR		86.7	1162.552	1
1.C21.8.1.5	0	1953.9376	1954.9449	1		AGDTLQLIQPFVNRNPR	Oxidation(P)@16	37.4	1954.0385	1
1.C23.8.1.6	0	1717.8226	1718.83	1		ESPRMGVLGDYVIER	Glu->pyro- Glu@N-term, Oxidation(P)@3	28.2	1717.8457	1

Figura 22. Detección de proteínas – group 1. Putative sulfate transporter OS Acinetobacter bayyi (strain ATCC 33305 / BD413 /ADP1) GN=ACIAD1241 PE=3 SV=1
Workflow Tasks	Protein ID	Spectra	Summary Statistics
Identify Proteins	Proteins Detected		
LC	N Unused Total % Cov Accessio Name Spe	tes Peptides(35%) Biological Processes Molecular Functions PANTHER ID	
Spot-Based (MS only)	1 200 200 4.3 trj08FCU Putative suifate transporter CS+Acinetobacter b ACU 2 1.31 1.31 1.3 trj08FAL DNA-directed DNA polymerase OS+Acinetobact ACU	0 1 0	
Spot-Based (MS and MS-MS)			
View			
Analysis Log			
Result			
Export	Protein Group 1 - Putative sulfate transporter OS-Acinetobacter baylyi (strain ATCC	33305 / BD413 / ADP1) GN-ACIAD1241 PE-4 SV-1	
Peptide Summary	Proteins in Group	Peptid	es in Group
Protein Summary	N Unused Total Accessio Name Species Cor 1 2.40 2.00 tr/04FC Putative sulfate trans ACIAD Cor	Modifications Cleavages Mass Prec N 2.00 99 LEMOVRYETTLHONTRIVE. missed RV 0.412 2570.3	W z Sc Spectrum / Type 1 3 1.021.8.1.7 Win
	Protein Sequence Coverage - Putative sulfate transporter OS=Acinetobacter baylyi	(strain ATCC 33305 / BD413 / ADP1) GN=ACIAD1241 PE=4 SV=1	
	HFQQIYQEWFSNIRADVLAGLVVGLALIPEATAFSIIAGVDFQVGLYASFSNAVVIAFNGGFPAN HFFVPDIPENLETLNIIPYSSALAAVGLLEENNTATIVDELTHTSSNNHNECKGOOIANIVTOF	ISAATGABALVNVSLUREBOLNYLFAATILTGIIQIIAGQLKLARLMRFVSKSUVIGFVNALAILIF MOGMAGCABIGOSBINVKSGABARLSTFVAGVFLLILVVFISDULKVIFMAALVAVNINVSISTFDU	MAQLPELINVSQUYLFVALGLAIIYLFFYIPRIGKLIPSPNVCIITITFLALIFSANVRTVGDMGHLPHTLP 38 ISMFRANKKSSNIVKLTVVVVVATATNKLIGVLVGVLSALFLAGTERDVMVETTLMGHTRIYDVRGOLF
	FSSERFAKAFDFQENVAHVIIDLTHSHIUDVTTVASLDHIVDKFQRNGIQVTVKGLNEASSIRI	LOAQUARRE	

Figura 23. Detección de proteínas – group 2. DNA polymerse OS Acinetobacter balyi (strainATCC33305/BD413 / ADP1) GN=fusA PE=4 SV=1

Workflow Tasks	Proteia ID Spectra Summary Statistics	
Identify Proteins	Proteins Detected	
LC	H Unused Total % Cov Accession. Hame Species Peptides(5%) BiologicalProcesses Molecular Functions PAITHER ID	ī
Spot-Based (MS only)	1 200 200 4.3 http://ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlate.html/ci.a.latabre.anlatabre.a	
Spot-Based (MS and MS-MS)		
View		
Analysis Log		
Result		
Export	Protein Group 2 - DNA-directed DNA solveeraw 05-Activetobacter bardel details ATCC 3306 / 8D411 / ADP11 GN-dnaE PE-4 SV-1	
Peptide Summary	Pretries in Graup Pretries in	i
Protein Summary	N Human Table Conv. T Conv. T Separate Modifications Classings Massimiliant T Separation Separation Separation <th< th=""><th>1</th></th<>	1
	Pratein Sequence Coverage - DRA-directed DNA polymerase 05-Acinetobacter baylet isinin ATCC 3338 / IBD413 / ADP11 GN-dnaE PE-4 SV-1	7
	REVULO INTEED TEED VALUE DAVISOR DA LA TERRITA MANY VIECTRO DE LOUVE ANDERE IT LAMENOVOU EL VIOUT ECOLE DE VORTE LECINE DE VORTE CENTRE ANDERE OFFICE ANDERE OFFICE AND ANDERE OFFICE AND	ī.
	AND CAREFULATION FOR THE REPORT OF THE REPORT OF THE PART OF THE PART OF THE REPORT OF THE PART OF THE	1 H
	REMEMBER FOR LAND FOR DEPTH THE DEPT	R V
	VEQUAL TEREOFORMANDAATION TOORIAMITA OPAREO DISTLANDA ON TEP CONDECONTINUE OPAREO LANDA ON THE CONDECONTINUE OF ANALASE VERANAARE VE	

Código de muestra: CO-CULTIVO T.A R5 (thrips amarillo replica cinco) Con el ProteinPilot™ Software 4.0, Paragon™ Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Acinetobacter+soli.fasta.

Tabla 36. Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF

Spectrum	Time	Prec MW	Prec m/z	Prec z	Prot N	Best Sequence	Modifications	Conf	Theor MW	z
1.C19.8.1.6	0	1162.6456	1163.653	1	1	EAYLAGRMPR		99	1162.5917	1
1.C21.8.1.7	0	2570.3638	2571.3711	1		GDEVVLKAHFVDSILRQYALAR	Propionamide@N- term	98.9	2570.397	1
1.C17.8.1.1	0	803.3333	804.3406	1		WGLWAR	Oxidation(W)@4	< 1	803.4078	1
1.C19.8.1.5	0	1846.9607	1847.968	1		INVVGGMAGNGYRAAAPGR	Oxidation(M)@7, Deamidated(N)@10	< 1	1846.9108	1
1.C21.8.1.5	0	1953.9376	1954.9449	1		AGDQVIDDSALNKLEKMR	Dethiomethyl(M)@17	< 1	1954.012	1

Figura 24. Detección de proteínas – group 1. Thiazole symthase OS Acinetobacter soli NIPH 2899 GN=fusA PE=3 SV=1

Workflow Tasks	ſ	_		Protein ID			1		Spectra						Summary Statist	tics		
Identify Proteins		Pr	teins Detected															
LC		E	I Unused Total % Cov A	iccessio	Name	Spe	ies Peptides(9	5%) Biological Processe	s Molecular Functions	PANTHER ID								
Spot-Based (MS only)			1 2.00 2.00 3.8 tr	NSADQ Thiszole synth	ase OS+Acinetobacter soli N	PH 90/	MBM	1			I							
Spot-Based (MS and MS/MS)																		
View																		
Analysis Log																		
Result		L																
Export		Pr	tein Group 1 - Thiazole syn	thase OS=Acinetoba	cter soli NIPH 2899 GN=	thiG PE=	SV=1											
Peptide Summary		С		Proteins in Group							Peptic	des in Group						
Protein Summary			Unused Total Accessio. 1 2.00 2.00 tr/H9AD	Name Thiazole synthase 0	Species 9GAMM	Co	V Conf V 2.00 99 E3	Sequence AYL AGRMPR	/ Modifications	Cleavages missed R	AMass Prec M 0.0545 1162.6	MW z Sc i4 1 3 1	Spectrum /	Type Win				
										_			ı					
		Ľ																
		Pr	tein Sequence Coverage -	Thiazole synthase O	S=Acinetobacter soli NI	PH 2899 (N=thiG PE=3 S	SV=1										
		E) D	DTPLIIGSRQFQSRLLVGTGK VLMNT&I&&AOOPVLM&S&MK	YEDLHETDLAIQASGA KAIEAGR EAYLAGRNP	IVTVAIRRVNIGQHADQF KRHANASSPETGYFFK		PERYTILPHTAC	SCFD AD SAIRTCHLARE	LLDGHNLVELEVLGD	QULYPNVTQTI	RAARTLIDDGFE	INVYTSDDP	VAQELESHG:	CVAIMPLGSLI	GSGLGILNPHTISI	IIKENAKVPVLVDA	GVGTASDAAIAM	SELGC
		L																_

Código de muestra: CO-CULTIVO T.A R5, R6, R7 (thrips amarillo replica cinco, seis, siete) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Serratia+nematodiphila%2C.fasta. Tabla 37. Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

				Prec	Prot					
Spectrum	Time	Prec MW	Prec m/z	z	Ν	Best Sequence	Modifications	Conf	Theor MW	z
1.C19.8.1.6	0	1162.6456	1163.653	1	4	VTAFPVVQMR	Oxidation(M)@9	99	1162.6168	1
1.C21.8.1.5	0	1953.9376	1954.9449	1	2	VGSHWGHGSGDIALAFSTR		99	1953.9446	1
1.C21.8.1.7	0	2570.3638	2571.3711	1	3	VSRNEDGVFFCFIEVLSVTPVR	Deamidated(N)@4, Carbamidomethyl©@11	99	2570.2839	1
1.C23.8.1.6	0	1717.8226	1718.83	1	1	QEAPSFDFQQGPVER	GIn->pyro-Glu@N-term, Deamidated(Q)@10	99	1717.7584	1
1.C17.8.1.1	0	803.3333	804.3406	1		SLRCLR	Carbamidomethyl©@4	95.4	803.4436	1
1.C11.8.1.19	0	1006.4357	1007.443	1		IGGSAKFNGR	Deamidated(N)@8	38.7	1006.5196	1

7 | 1007.443 | 1 | IGGSAKFNGR | Deamida Figura 25. Detección de proteínas – group 1. Enoyl-CoA hydratase

OS=Serratianematodiphila GN=JL05_19845 PE=3 SV=1

Figura 26. Detección de proteínas – group 2. D-aminopeptidase OS = Serratia nematodiphila GN=JL05_17250 PE=4 SV=1

Figura 27. Detección de proteínas – group 3. UPF0267 protein JL05_14905 OS Serratia nematodiphila GN=JL05_14905 PE=3 SV=1

Workflow Tasks	Protein ID	Spectra	Summary Statistics
Identify Proteins	Proteins Detected		
LC	N Unused Total % Cov Accessio Name Species	Peptides(35%) Biological Processes Molecular Functions PANTHER ID	
Spot-Based (MS only)	1 2.00 2.01 6.3 tstA0A08 Encyl-CoA hydrotase OS=Serratia nematodiphil SENTR 2 2.00 2.01 5.4 tstA0A08 D-aminopeptidase OS=Serratia nematodiphila SENTR	1	
Spot-Based (MS and MS:MS)	3 2.00 2.00 21.6 \$5404.08 UP90267 protein JL05_14905 OS=Serratia nem SENTR 4 2.00 2.00 4.6 \$1404.08 Uncharacterized protein OS=Serratia nematodip SENTR		
View	5 2.00 2.00 1.2 tsA0A08 Acyl-CoA dehydrogenase OS-Serralia nemetodi SENTR	1	
Analysis Log	0 200 2.00 r.s. showar. passionance elements co-general reset. Sector		
Result			
Export	Protein Group 3 - UPF0267 protein JL05_14905 OS-Serratia nematodiphila GN-JL05_14	1905 PE-3 SV-1	
Peptide Summary	Proteins in Group	Peptid	les in Group
Protein Summary	N Unused Total Accessio Name Species Con 3 2.49 2.00 tr/A0A06 UP/9267 protein JLS 9ENTR 2.0	Conf Sequence Modifications Cleavages (Mass Prec N Sequence) VSBRD(GVFFCFTEVLSVT, Deamidated(0);0)4 missed R4L, 0.4754 2570.3	IW z Sc Spectrum / Type
		CarbamidomethyNC) (2/11	
	Protein Sequence Coverage - UPF0267 protein JL05_14905 OS=Serratia nematodiphila	GN=JL05_14905 PE=3 SV=1	
	HSREITFFSRFEQDILAGRKTITIRDASESHFEPGEVLR VSRHEDGVFFCFIEVLSVTPVR LDALTE	RHAQQENHSLGELKQVIKEIYPGLDSLFVIEFVKR	

Figura 28. Detección de proteínas – group 4. Uncharacterized protein OS Serratia nematodiphila GN=JLO5_10085 PE=4 SV=1

Figura 29. Detección de proteínas – group 5. Acyl-CoAdehydrogenase OS Serratia nematodiphyla GN=fadE PE=4 SV=1

		· ·	Concel land a
Workflow Tasks	Protein ID	Spectra	Summary Statistics
Identify Proteins	Proteins Detected		
LC	N Unused Total % Cov Accessio Name	Species Peptides(35%) Biological Processes Molecular Functions PANTHER ID	
Spot-Based (MS only)	1 2.00 2.00 6.3 tr(A0A08 Encyl-CoA hydratase OS+Serratia nematodiphi 2 2.00 2.00 5.4 MA0A08. Deminorantidase OS+Serratia nematodiphia	SENTR 1	
Spot.Based (MS and MSMS)	3 2.00 2.00 21.6 bjA0A08 UPF0267 protein .L05_14905 OS=Serratia nem	SENTR 1	
View.	4 2.00 2.00 4.6 b(A0A03 Uncharacterized protein OS-Serratia nernatodip	SENTR 1	
THEW	6 2.00 2.00 7.2 bjA0A08 Dianinopinelate epinerase OS-Serratia nenat	SENTR 1	
Analysis Log			
Result			
Export	Protein Group 5 Acid CoA debudronenses OS-Serratia nematedinhila GN-fadi	DE-4 SV-1	
Peptide Summary	Protein croup 5 - Acyr.cox conjuringenaie 0.5 - Serrada nonatoripina ch-late	PL-1 AP-1	
Protein Summary	N Unused Total Accessio Name Species	Con V Conf V Sequence / Modifications / Cleavages /Mass Pre	MW z Sc Spectrum / Type
	5 2.49 2.00 tr A9A08 Acyt-CoA dehydroge 9ENTR	2.00 59 HLVECLSVGR CarbamidomethyRC 0.0623 116	.64 1 3 1.C19.8.1.6 Win
	Protein Sequence Coverage - Acyl-CoA dehydrogenase OS=Serratia nematodip	nila GN=TadE PE=4 SV=1	
	HEVLS IVVFLALLGVVFYHRVNLTLSSLILVAYTAAHGAIGLWSFWLLLPLAIVLLPLNLSSY SLGPGELLONYGTEKONNHYLPGLARGDEIPCFALTSPEAGSDAGAIPDVGTVCHGEWOGKO	/RRSLLSAPALFAFRVMPPMSTTEKEAIDAGTTWWEGDLFRGAFDUNKLHSYPKPRLTEEQAFIDG /LGMRLTUNKRYITLAFVATVLGLAFKLHDPNRLLSINESPGITCALIFTSTFOVEIGNRHFPLMVPF/	VEEACRNANDFQITHELABLPPELWAYLKENRFFANIIKKEYGGLEFSPYAQANVLQKLAGVSGILAITVGVPN NGPTRGTDVFVPIDYIIGGPKNAGGGVF MLVECLSVGR GITLPSNETGSLKSIALATGAYANIRBOFKISIGKM
	EGIEEPLARIAGNTYVNDAAASLITYALVQGEEPAVLSAIVEVNCTHRGQQSIVDANDIAGO GONYLASAU, FEEDARGEORED, D. MINGUODEL NYAFOAL DEL DERENDETAGAL DEVUT	SOINLGESNFLARAYQGAPIAITVEGANILTRTMMIFGQGAIRCHPYVLDEMAAAQMNDLNAFDKSLF SEGDUMTA DENDI DHAA ANTI GUDE ATDEDI GDGGAVI TDEFMUDYGI I FIALA AMMA AFD YNFDLGED	HLGHVOSNKVRSFULGLTNGRTSATFTKDATRRYTQQLNRLSANLALLSDVSNGVLGGSLKRRERISARLGDIL
		FOR THE REPORT OF THE REPORT OF THE REPORT OF THE REPART OF T	ANNELL I FERRURE AND FOR TORDERAL TARGED FURGETARDE IN AND FURGERARDE PLANAR TORDERAL TORDERAL

	Protein ID Seastra Summary Statistics	
Workflow Tasks		
Identify Proteins	Proteins Detected	
LC	H Unused Total % Cov Accessis Name Species Peptides(35%) Biological Processes Molecular Functions PANTIER ID	
Spot-Based (MS only)	1 200 200 6.3 h9A0A08. Encyst-CoA hydratese OS=Serrate nemetodpiN. SENTR 1	
	2 2/00 2/00 54 [st0.400.5] D-ammogetablese OS-Serrita nematode/sia 0 [RMTR 1 3 2/00 2/00 2/06 [st0.400.6] D-01 4/00 CO-Serrita nematode/sia 0 [RMTR 1	
Spot-Based (MS and MS-MS)	4 200 200 46 tybA0.00. Utchwatertized pictor Old-Birtho mentaloga. (BNR 1	
View	5 2.00 2.00 1.2 tylAAAB. Acyl-CoA dehydrogenase OS=Serrelia nematodii. IRNTR 1	
Analysis Log	6 2.00 2.00 7.2 (sp40.40). [Caminoprinsite epimerace OS-Servatia nenet SBNTR 1	
Result	1	
Export	Protein Graup 6. Diaminonimatate enimerase OS-Serratia nematodishila GludarE PE-3 SM-1	
Peptide Summary		
Protein Summary	Proteins in Group Peptide in Group Pertification Pertific	
	019	
	Protein Sequence Coverage - Diaminopimelate epimerase OS=Serratia nematodiphila GN=dapF PE=3 SV=1	
	HTPLLFIRKTIGLONDYLVCRR VAD PLOHEQUPLLCHPHY010800LL108004XWPTL011NP0084KKS0N0LP1Y4PLP009W0000PFLVHTA000VFCVAQ0ANQTVVEN0ANTF0ALPALPALPALPALPALPALPALPALPALPALPALPALPA	FFKRTNVQLVEVVDRQTLRI
	GIVERGAGFTLASGSISCAAASVNIKLGEVGDEVISVIENGGELQIAFSGD7QVBERGPVIKIATLTLGEDC7AGGAGLFTGSTPAA	

Figura 30. Detección de proteínas – group 6. Diaminopimelate OS Serratia nematodiphila GN=dapF PE=3 SV=1

Código de muestra: CO-CULTIVO T.A R6, R1 (thrips amarillo replica seis, uno) Con el ProteinPilot[™] Software 4.0, Paragon[™] Algorithm: Detected Protein Threshold [Unused ProtScore (Conf)] >0.70 (80.0%) se logro la identificación de secuencias de más de 90% de confianza utilizando como Data base: uniprot-Serratia+marcescens.fasta.

Tabla 38.Secuencia de aminoácidos del ion precursor fragmentadas por espectrometría de masas MS MALDI TOF-TOF.

Spectrum	Time	Prec MW	Prec m/z	Prec z	Prot N	Best Sequence	Modifications	Conf	Theor MW	z
1.C21.8.1.5	0	1953.94	1954.945	1	3	VGSHWGHGSGDIALAFSTR		99	1953.9446	1
1.C21.8.1.7	0	2570.36	2571.371	1	2	VSRNEDGVFFCFIEVLSVTPVR	Deamidated(N)@4, Carbamidomethyl©@11	99	2570.2839	1
1.E16.10.1.9	0	1943.86	1944.867	1	1	NDEAGETVTYQVNGAGYR	Deamidated(N)@1	99	1943.8497	1

Figura 31. Detección de proteínas – group 1. Uncharacterized protein OS= Serratia marcescens SM39 GN=SM39_3702 PE=4 SV=1

Figura 32. Detección de proteínas – group 2. UPF0267 protein SM39 OS = Serratia marcescens SM39 GN=SM39 _2279 PE=4 SV=1

Figura 33. Detección de proteínas – group 3. Putative peptidase OS= Serratia mar es ens SM 39 GN=SM39_1783 PE=4 SV=1

Figura 34. Detección de proteínas – group 4. Diaminopime epimerase OS=Serratia marcescensww4 GN=dapF PE=4 SV=1

Workflow Tasks	Protein ID Spectra Summary Statistics								
Identify Proteins	Proteins Detected								
LG	B Unused Total % Cov Accession Hame Species Peptides(95%) Biological Processes Molecular Functions PAITHER.D								
Spot-Based (MS only)	1 200 200 120 [94057] Ucharasticites prato of off-arran ancession. SBMA 1 2 200 200 210 194050. [97097] Conferent ances 2590A 1								
Spot-Based (MS and MS-MS)	3 2.00 2.00 5.4 byM035 Author pedities Collembin messesion 30.4 4 3.00 7.00 7.0 2.00								
View	5 2.00 2.00 3.7 (F.S.M.C., Type II recention reporting two., SIRMA 1 Execution reporting two., SIRMA 1								
Analysis Log									
Result									
Export	Parache Served & Benchmarker Marker and Serversee 1999 (St. door D. S. 2014)								
Peptide Summary	Protein Group 4 - Diaminophinetate spimerase US-Serrata matcescens www. Gerari PC-3.54-1								
Protein Summary	Proteins in Group Proteins in Group Peptides in Group B Unused Total Accession_IName Species CasS Conf ** Sequence Modifications Cleavage Aname Press Wig. 2 (6) Specifyum /* Type								
	4 2.09 72.00 9.175K Damogramidae etc \$\$\$\$\$\$\$								
	4 8.0 2.0 (p.8AARG.,) bieminoprintide rgk SI/BMA								
	Protein Sequence Coverage - Diamingginelate epimerase OS-Serratia marcescens WW4 GN-dapF PF-3 SV-1								
	DIRENTIAL DESCRIPTION OF AND ADDRESS ADDRE								

Figura 35. Detección de proteínas – group 4. Diaminopimelate epimerase OS= Serratia marcescens ww4 GN=dapF PE=3 SV=1

Workflow Tasks	Protein ID Spectra Summary Statistics
Identify Proteins	Poteins Detected
LC	N Unused Total % Cov Accession. Name Species PopUdes(35%) Biological Processes (Molecular Functions PAITIBLE
Spot-Based (MS only)	1 200 200 120 H00V/- Uncharakterized protein 05-permis maccesse- 289MA 1 2 200 20 21 6 H00V/- Uncharakterized protein 050-227 00 5 H00V 21 Permis macc. 289MA 1 1
Spot-Based (MS and MS-MS)	2 200 200 541 (1940)55 Author peptidate 05-Smith moreoscent 944 1939A 1
View	4 200 2/0
Analysis Log	
Result	
Export	
Peptide Summary	Protein Greup 4 - Diaminopimelate epimerase OS-Serratia marcescens WW4 GN-dapF PE-3 SV-1
Protein Summary	Proteins in Group Peptides in Group Peptides in Group 1
	4 2.46 2.46 U UL727K Biomingsimetale gik SEBMA 2.46 D M TFLETPRCYSCLABULLYC. CarbonistonethyC messect X 8.4956 2578.34 1 3 LCL8.L7 Win
	4 0.00 2.00 tr/AbdG Diaminopimetide rgs SDMA
	Protein Sequence Coverage - Diaminopimelate epimerase 05-Serratia marcescens WW4 GN=dapF PE=3 SV=1
	NTYLENKONG.BDD.YXXXBFYAD.LEBEQT.BLCBHY010500.LEBEQA.WHPTA51110F00EAXER0000471WHX0FD0FVUHX000VFC9AQ0A001Y2EB0A0FBALFALT0LFEAUY92FLEEETAV0LY2BB0FDEVVFVEELLAV0H00751WHX0FTV

Figura 36. Detección de proteínas – group 5.Type III secretion apparatus H+transporting two sector ATPase OS= Serratia marcescens FGI94 GN=D781_3942 PE=4 SV=1

Workflow Tasks	Protein ID	Spectra	Summary Statistics
Identify Proteins	Proteins Detected		
LC	N Unused Total % Cov Accessio Name	Species Peptides(95%) Biological Processes Molecular Functions PANTHER ID	
Spot-Based (MS only)	1 2.00 2.00 12.8 b9A0SY Uncharacterized protein OS-Servatia marcesce 2 2.00 2.00 21.6 b4A0S30 UEP0087 evotein SM19 2229 OS=Servatia marc	SERMA 1	
Spot-Based (MS and MS/MS)	3 2.00 2.00 5.4 tr/M0SS Putative peptidase OS=Serratia marcescens SM	SERMA 1	
View	4 2.00 2.00 7.2 trj.72H Diaminopineliste epimerase OS-Serratia marce 5 2.00 2.00 3.7 trjL0MLC Type II secretion apparatus H+-transporting two	SERMA 1 SERMA 1	
Analysis Log_			
Result			
Export			
Peptide Summary	Protein Group 5 - Type III secretion apparatus H+-transporting two-sector ATP'a	e OS-Serratia marcescens FGI94 GN-D781_3942 PE-4 SV-1	
Protein Summary	N Unused Total Accessio Name Species	Con Conf Sequence Modifications Cleavages Mass Pro	tides in Group c MW z Sc Spectrum / Type
	5 2.00 2.00 trj.t.0MLC Type III secretion ap SERMA	2.00 99 SRTVLVCATSDRSSMER Carbamidomethy(C) missed R.T 0.0020 19 (37	3.83 1 3 1.C21.8.1.5 Win
	Protein Sequence Coverage - Type III secretion apparatus H+-transporting two	ector ATPase OS-Serratia marcescens FGI94 GN-D781_3942 PE-4 SV-1	
	HTE I AGGI AANADRORRRLQAADAVTAYGRVTGISGILLECSLPRARIGDLCRITRGEQEST	LAEVVGFNPQHTLLSALGPLDGIARGARVTPLULPHSISVSEALLGSVLDGFGRPLDEQSVGAFALPO	SOVDTVPVVSDAPPPTARPRIAQALPTOVRAIDGLITLGVGQRVGVFAGAGCGKTTLLAELARNTPCDAIVFGLI
	HTDAAVEAQGAINGFLEQETRAPCAWEETLQQLTEVSGYAPEQQH	an in an graduation for other and the second first of the second s	a no sta di mandro di la tra da da da serego i da tra panda degla de tra de la serego de la serego de la serego
	1		

Los mejores espectros en términos de número de picos, intensidad de la señal, resolución del pico, y la relación señal-ruido, fueron seleccionados para un segundo tiempo de vuelo, un ion- precursor de 2,322 KD en relación su masa/carga, fue fragmentado (Fig. ..)

Los resultados muestran un péptido de 18 aminoácidos que tiene un porcentaje de homología del 100 % con el ARN polimerasa dependiente de ARN del TSWV (Fig. ..)

Figura 38. Fragmentación del ion precursor, de las proteínas extraídas del "trips de la mancha roja del banano" Chaetanaphothrips signipennis.

Sequences producing significant alignments:								
Sel	Select: All None Selected:0							
🕻 Alignments 📲 Download 🖂 <u>GenPept</u> <u>Graphics</u> <u>Distance tree of results</u> <u>Multiple alignment</u>								
	Description	Max score	Total score	Query cover	E value	ldent	Accession	
	RdRp [Tomato spotted wilt virus]	61.7	61.7	94%	2e-09	100%	AIA24439.1	
	RNA polymerase [Tomato spotted wilt virus]	49.4	49.4	94%	2e-05	82%	<u>AEI70839.1</u>	
	RdRp [Tomato spotted wilt virus]	49.4	49.4	94%	2e-05	82%	AIX02806.1	
	RNA polymerase [Tomato spotted wilt virus]	49.4	49.4	94%	2e-05	82%	BAP63975.1	

Figura 39. Alineamiento de la secuencia de 18 aminoácidos detectados en las proteínas extraídas del C. signipennis.

ORIGIN						
1	mniqkiqkli	engttlllsi	edcvgsnhdl	aldlhkrnsd	eipedviinn	naknyetmre
61	livkitadge	glnkgmatvd	vkklsemvsl	feqkyletel	arhdifgeli	srhlrikpkq
121	rneveiehal	reyldelnkk	scinklsdde	ferinkeyva	tnatpdnyvi	ykesknselc
181	liiydwkisv	dartetktme	kyykniwksf	kdikvngkpf	ledhpvfvsi	vilkpiagmp
241	itvtssrvlg	kfedspsalh	gerikhakna	kllnisyvgq	ivgttptvvr	nyyantqkik
301	sevrgilgdd	fgskdvffsh	wtskykernp	teiaysedie	riidslvtde	ipreeiihfl
361	fgnfcfhiet	vndqhiadkf	kgyqnscinl	kiepktdlad	lkdlliqkqq	iwdslygkhl
421	ekimlrirek	kkkekeipdi	ttafnqnaae	yeekypncft	ndlsetktnf	smtwspsfek
481	velssevdyn	naiinkfres	fksssrvvyn	spyscinnqt	nkarditnlv	rlcltelscd
541	ttkmekqele	deidintgsi	kvertkkske	wnkqgscltr	nknefcmket	grenkttyfk
601	glavmnigms	skkrilkkee	ikeriskgle	ydtserqadp	nddyssidms	slthmkklir
661	hdnedslswc	ekikdslfvl	hngdireegk	itsvynnyak	npeclyiqds	vlkaeletck
721	kinklcndla	iyhysedmmq	fskglmvadr	ymtkesfkil	ttantsmmll	afkgdgmntg
781	gsgvpyialh	ivdedmsdqf	nicytkeiys	yfrsgsnyiy	imrpqrlnqv	rllslfktps
841	kvpv <mark>cydqls</mark>	kkanemekwl	knkdiekvnv	fsmtmtvkqi	linivfssvm	igtvtklsrm
901	gifdfmryag	flplsdysni	keyirdkfdp	ditnvadiyf	vngikkllfr	medlnlstna
961	kpvvvdhend	iiggitdlni	kcpitgstll	tledlynnvy	laiymmrksl	hnhvhnltsl
1021	lnvpaewelk	frkelgfnif	ediypkkamf	ddkdlfsing	alnvkalsdy	ylgnienvgl
1081	mrseienked	flspcykist	lksskkcsqs	niistdeiie	clqnakvqdi	gnwkgnnlai

Alineamiento en BLAST.

Las cepas identificadas y caracterizadas molecularmente de microorganismos nativos asociados a la filosfera y rizosfera del banano, que son reportadas por tener efectos antaginistas y que han sido evaluadas se presentan en la siguiente tabla:

Tabla 39. Espcies bacterianas de interés en control biológico, presentes en la filosfera y rizosfera del banano.

PROCEDENCIA	ESPECIE	HOMOLOGÍA %
Filosfera	Bacillusamyloliquefaciens	100
Filosfera	Bacillusmegaterium	99
Filosfera	Bacilluspumilus	99
Filosfera	Bacillusmegaterium	100
Filosfera	Bacillusmegaterium	99
Filosfera	Lysinibacillus sphaericus	100
Filosfera	Bacilluspumilus	99
Rizosfera	Lysinibacillus sphaericus	100
Rizosfera	Bacillus aryabhattai	100
Rizosfera	Bacillus thuringiensis	100
Rizosfera	Bacillusmegaterium	99
Rizosfera	Bacillusamyloliquefaciens	100
Rizosfera	Bacillusamyloliquefaciens	100
Rizosfera	Bacilluspumilus	100
Rizosfera	Lysinibacillus sphaericus	100

3.- Evaluación de cepas benéficas para la alteración de la microbiota de los trips, basándose en el análisis funcional de las pruebas de antagonismos.

Tabla 39. Evaluación de cepas benéficas.

N°	PROCEDENC		BACTERIA DE	DIÁMETR	CONDICIÓN DE
	IA DE LA	BACTERIA ANTAGONICA	LA	O DE	LA ZONA DE
	MUESTRA		MICROBIOTA	INHIBICIÓ	INHIBICIÓN
				Ν	
1	Filosfera	Bacillusamyloliquefaciens	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	Erwinia sp. R8-2	2 – 10 mm	Inhibición
					moderada
3	Filosfera	Bacilluspumilus	<i>Erwinia sp</i> . R8-2	>10 mm	Inhibición fuerte
4	Filosfera	Bacillusmegaterium	Erwinia sp. R8-2	2 – 10 mm	Inhibición
					moderada
5	Filosfera	Bacillusmegaterium	<i>Erwinia sp</i> . R8-2	2 – 10 mm	Inhibición
					moderada
6	Filosfera	Lysinibacillus sphaericus	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
8	Rizosfera	Lysinibacillus sphaericus	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	Erwinia sp. R8-2	>2mm	Inhibición débil
10	Rizosfera	Bacillus thuringiensis	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	<i>Erwinia sp</i> . R8-2	2 – 10 mm	Inhibición
					moderada
12	Rizosfera	Bacillusamyloliquetaciens	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Erwinia sp. R8-2	>10 mm	Inhibición fuerte
15	Rizosfera	Lysinibacillus sphaericus	Erwinia sp. R8-2	>10 mm	Inhibición fuerte

N°	PROCEDENCI A DE LA MUESTRA	BACTERIA ANTAGONICA	BACTERIA DE LA MICROBIOTA	DIÁMETR O DE INHIBICIÓ N	CONDICIÓN DE LA ZONA DE INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
3	Filosfera	Bacilluspumilus	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
4	Filosfera	Bacillusmegaterium	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
5	Filosfera	Bacillusmegaterium	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
6	Filosfera	Lysinibacillus sphaericus	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
8	Rizosfera	Lysinibacillus sphaericus	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	<i>Pantoea dispersa</i> strain GTC 1472.	0 mm	No inhibición
10	Rizosfera	Bacillus thuringiensis	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	<i>Pantoea dispersa</i> strain GTC 1472.	2 – 10 mm	Inhibición moderada
12	Rizosfera	Bacillusamyloliquefaciens	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	<i>Pantoea dispersa</i> strain GTC 1472.	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Pantoea dispersa strain GTC 1472.	2 – 10 mm	Inhibición moderada
15	Rizosfera	Lysinibacillus sphaericus	Pantoea dispersa strain GTC 1472.	>10 mm	Inhibición fuerte

N°	PROCEDENCI A DE LA MUESTRA	BACTERIA ANTAGONICA	BACTERIA DE LA MICROBIOTA	DIÁMETRO DE INHIBICIÓN	CONDICIÓN DE LA ZONA DE INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	Serratia nematodiphila	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
3	Filosfera	Bacilluspumilus	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
4	Filosfera	Bacillusmegaterium	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
5	Filosfera	Bacillusmegaterium	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
6	Filosfera	Lysinibacillus sphaericus	Serratia nematodiphila	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
8	Rizosfera	Lysinibacillus sphaericus	Serratia nematodiphila	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	Serratia nematodiphila	0 mm	No inhibición
10	Rizosfera	Bacillus thuringiensis	Serratia nematodiphila	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
12	Rizosfera	Bacillusamyloliquefaciens	Serratia nematodiphila	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	Serratia nematodiphila	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Serratia nematodiphila	2 – 10 mm	Inhibición moderada
15	Rizosfera	Lysinibacillus sphaericus	Serratia nematodiphila	>10 mm	Inhibición fuerte

N°	PROCEDENCIA DE LA MUESTRA	BACTERIA ANTAGONICA	BACTERIA DE LA MICROBIOTA	DIÁMETRO DE INHIBICIÓN	CONDICIÓN DE LA ZONA DE INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	Acinetobacter baumannii	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
3	Filosfera	Bacilluspumilus	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
4	Filosfera	Bacillusmegaterium	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
5	Filosfera	Bacillusmegaterium	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
6	Filosfera	Lysinibacillus sphaericus	Acinetobacter baumannii	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
8	Rizosfera	Lysinibacillus sphaericus	Acinetobacter baumannii	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	Acinetobacter baumannii	0 mm	No inhibición
10	Rizosfera	Bacillus thuringiensis	Acinetobacter baumannii	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
12	Rizosfera	Bacillusamyloliquefaciens	Acinetobacter baumannii	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	Acinetobacter baumannii	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Acinetobacter baumannii	2 – 10 mm	Inhibición moderada
15	Rizosfera	Lysinibacillus sphaericus	Acinetobacter baumannii	>10 mm	Inhibición fuerte

N°	PROCEDENCIA		BACTERIA DE LA	DIÁMETRO	CONDICIÓN DE
	DE LA	BACTERIA ANTAGONICA	MICROBIOTA	DE	LA ZONA DE
	MUESTRA			INHIBICIÓN	INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		
2	Filosfera	Bacillusmegaterium	Pantoea		Inhibición fuerte
2	1 1031614	Daemasmegateriam	agglomerans	210 11111	
			aggiomerans		
3	Filosfera	Bacilluspumilus	Pantoea	2 – 10 mm	Inhibición
		-	agglomerans		moderada
	/	D			
4	Filosfera	Bacillusmegaterium	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		
5	Filosfera	Bacillusmegaterium	Pantoea	∖10 mm	Inhibición fuerte
5	1 11031614	Daemasmegateriam	andomerans	210 11111	
			aggiomerans		
6	Filosfera	Lysinibacillus sphaericus	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		
1	Filosfera	Bacilluspumilus	Pantoea	2 – 10 mm	Inhibición
			agglomerans		moderada
8	Rizosfera	l vsinibacillus sphaericus	Pantoea	>10 mm	Inhibición fuerte
0		Lysinibaoinas spriaenous	agglomerans		
			uggiornorano		
9	Rizosfera	Bacillus aryabhattai	Pantoea	2 – 10 mm	Inhibición
		-	agglomerans		moderada
10	Rizosfera	Bacillus thuringiensis	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		
11	Rizosfera	Bacillusmegaterium	Pantoea	>10 mm	Inhibición fuerte
• •	112001010	Baomaomogatoriam	agglomerans		
			aggiointerante		
12	Rizosfera	Bacillusamyloliquefaciens	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		
10	Dimonform	De eille e ere de lieu e fe eie ne	Dentese	. 10	lubibición fuente
13	Rizosiera	Bacillusamyloliquelaciens		>10 mm	Innibición Tuerte
			aggiomerans		
14	Rizosfera	Bacilluspumilus	Pantoea	2 – 10 mm	Inhibición
			agglomerans		moderada
15	Rizosfera	Lysinibacillus sphaericus	Pantoea	>10 mm	Inhibición fuerte
			agglomerans		

N°	PROCEDENCIA DE LA MUESTRA	BACTERIA ANTAGONICA	BACTERIA DE LA MICROBIOTA	DIÁMETRO DE INHIBICIÓN	CONDICIÓN DE LA ZONA DE INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	Serratia marcescens	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	Serratia marcescens	>10 mm	Inhibición fuerte
3	Filosfera	Bacilluspumilus	Serratia marcescens	2 – 10 mm	Inhibición moderada
4	Filosfera	Bacillusmegaterium	Serratia marcescens	>10 mm	Inhibición fuerte
5	Filosfera	Bacillusmegaterium	Serratia marcescens	2 – 10 mm	Inhibición moderada
6	Filosfera	Lysinibacillus sphaericus	Serratia marcescens	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	Serratia marcescens	2 – 10 mm	Inhibición moderada
8	Rizosfera	Lysinibacillus sphaericus	Serratia marcescens	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	Serratia marcescens	2 – 10 mm	Inhibición moderada
10	Rizosfera	Bacillus thuringiensis	Serratia marcescens	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	Serratia marcescens	2 – 10 mm	Inhibición moderada
12	Rizosfera	Bacillusamyloliquefaciens	Serratia marcescens	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	Serratia marcescens	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Serratia marcescens	2 – 10 mm	Inhibición moderada
15	Rizosfera	Lysinibacillus sphaericus	Serratia marcescens	>10 mm	Inhibición fuerte

N°	PROCEDENCIA DE LA MUESTRA	BACTERIA ANTAGONICA	BACTERIA DE LA MICROBIOTA	DIÁMETRO DE INHIBICIÓN	CONDICIÓN DE LA ZONA DE INHIBICIÓN
1	Filosfera	Bacillusamyloliquefaciens	Acinetobacter sp.	>10 mm	Inhibición fuerte
2	Filosfera	Bacillusmegaterium	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
3	Filosfera	Bacilluspumilus	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
4	Filosfera	Bacillusmegaterium	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
5	Filosfera	Bacillusmegaterium	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
6	Filosfera	Lysinibacillus sphaericus	Acinetobacter sp.	>10 mm	Inhibición fuerte
7	Filosfera	Bacilluspumilus	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
8	Rizosfera	Lysinibacillus sphaericus	Acinetobacter sp.	>10 mm	Inhibición fuerte
9	Rizosfera	Bacillus aryabhattai	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
10	Rizosfera	Bacillus thuringiensis	Acinetobacter sp.	>10 mm	Inhibición fuerte
11	Rizosfera	Bacillusmegaterium	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
12	Rizosfera	Bacillusamyloliquefaciens	Acinetobacter sp.	>10 mm	Inhibición fuerte
13	Rizosfera	Bacillusamyloliquefaciens	Acinetobacter sp.	>10 mm	Inhibición fuerte
14	Rizosfera	Bacilluspumilus	Acinetobacter sp.	2 – 10 mm	Inhibición moderada
15	Rizosfera	Lysinibacillus sphaericus	Acinetobacter sp.	>10 mm	Inhibición fuerte

Con respecto a los efectos citotóxicos del hongo *Nomuraea rileyi*, evaluados sobre los estados adultos de *Chaetanaphothrips signipennis*. De cada 100 individuos en las tarrinos se logro una moratalidad del 67% al cuarto día de aplicación y de 100 % al séptimo día de aplicación el los estados adultos.

Figura 40. Efecto citióxico del hongo *Nomuraea rileyi*, sobre *C. signnipennis*. A) Cuarto día después aplicación b) séptimo día después de la aplicación.

DISCUSIÓN

Las secuencias que se han sido obtenidas de la amplificación para la identificación molecular de las especies *C. signipennis y F. párvula*, utilizando los tres locis genéticos diferentes: 18S ADN ribosomal, Tubulin -alfa I y citocromo oxidasa C subunidad I, no lograron tener una alta homología con las secuencias disponibles de la base de datos del centro nacional de información biotencológica (NCBI, por sus siglas en ingles); debido a que hasta la fecha no se encuentra disponible las secuencias génicas de ambas espcies, que solo han sido identificadas con métodos tradicionales, utilizando claves taxonómias. Las secuencias disponibles con las que mas homología han logrado tener son con las que han sido puestas a disposición por parte de R.S. Buckman *et al*, 2013; quien realizó la filogénie de trips (Insecta: Thysanoptera), basados en cinco locis molecular diferentes.

Las bacterias aisladas y caracterizadas molecularmente de *C. signipennis y F. párvula;* están asociados de manera simbiótica, al proceso ontegénico de dichos insectos. Siendo *Serratia marcescens* y *Pantoea agglomerans* las especies bacterianas que se han logrado encontrarse en los análisis moleculare realizados. De Vries *et al.*, 2010, determinó que *S.marcescens* y *P. agglomerans* son simbiontes obligados de *Thrips tabaco* y *Frankliniella occidentalis* (Thysanoptera: Thripidae).

Los metagenomas realizados de *C. signipennis y F. párvula* muestran la gran diversidad bacteriana presente en los diferentes estados de desroollo de los "trips del banano" (huevos, ninfas y adultos). La comparación de los diferentes metagenomas muestra que *S.marcescens* se encuentra presente en los diferentes estados de desarrollo de *F. párvula*. Mediante la estimación de la diversidad bacteriana de *Scirtothrips dorsalis* (Thysanoptera: Thripidae), mediante secuención de nueva generación; Mannion CM., *et al*, 2014, han logrado identificar el género *Serratia*, presente en los estados ninfales y adultos.

Utilizando el protocolo desarrollado por QIAGEN KIT Qproteome® Bacterial Protein Preparation Handbook catalogo 37900 se logró extraer proteínas. Migradas a 90 voltios por 3 horas, no en todos los microorganismos se obtuvo las bandas deseadas por lo que permitió seguir optimizando la D.O de algunos cultivos de microorganismos, y co-cultivos de *Chaetanaphothrips signipennis* y *Frankliniella párvula*. Se digirió dos bandas por muestra utilizando el protocolo de Shevchenko et al 2006: que nos permitió la digestión eficiente de proteínas fijadas en gel de poliacrilamida. Se realizó análisis por espectrometría de masas MS MALDI TOF- TOF obteniendo mapeos de masas de alto rendimiento que nos permitió la identificación de secuencias de aminoácidos correspondientes a los microorganismos a estudio con más de 90% de confianza.

La espectrometría de masas mediante la técnica de Ionización/Desorción de Laser Asistido por Matriz en doble tiempo de vuelto (MALDI - TOF/TOF MS), de las proteínas extraídas de *C. signipennis*, muestran un péptido de 18 amino ácidos que tiene un porcentaje de homología del 100 % con el ARN polimerasa dependiente de ARN del virus del bronceado del tomate (TSWV, del inglés tomato spotted wilt virus), este virus no ha sido reportado anteriormente en *C. signipennis* (Rotenberg D., *et al*, 2014).

La búsqueda de microorganismos antagonistas, en la filosfera y rizosfera del banano, mediante el uso de herramientas moleculares nos ha permitido caracterizar bacterias del género *bacillus* y un hongo del género *Nomuraea* que nos ha permitido desarrollar los ensayos de antagnonismo con las cepas de la microbiota intestinal de los trips del banano. Ceballos I, *et al.*, 2011, ha descrito bacterias del género *bacillus* en plantas de banano.

Las bacterias *Lysinibacillus sphaericus* y *Bacillusamyloliquefaciens* han mostrado una buena ihnibición de las bacterias de la microbiota intestinal de los trips del banano. El hongo del género *Nomuraea* ha mostrado efectos citotócitos sobre los trips del banano.

CONCLUSIONES

Se ha logrado caracterizar una gran diversidad bacteriana cultivada y no cultivada, presente en el tracto digestivo de los "trips del banano", basados en métodos dependientes e independintes de cultivo microbiano.

La microbiota cultivable y no cultivable se ha podido caracterizar a nivel genómico, metagenómico y proteómico, siendo las especies *Serratia marcescens* y *Pantoea agglomerans*, simbiontes obligados de los "trips del banano".

La filosfera y rizosfera de banano albergan una gran diversidad de microoganismo beneficos, que puedn ser utilizados para controlar diversas plagas y enfermedades presentes en el cultivo de banano. Siendo *Bacillus amyloliquefaciens* y *Lysinibacillus sphaericus*, dos especies bacterianas que han mostrado desequilibrar las bacterias simbiontes obligadas de los "trips del banano": *Serratia marcescens* y *Pantoea agglomerans.*

REFERENCIAS BIBLIOGRÁFICAS

Ahmad F, Babalola OO, Tak HI. Potential of MALDI-TOF mass spectrometry as a rapid detection technique in plant pathology: identification of plant-associated microorganisms. Anal Bioanal Chem. 2012 Sep;404(4):1247-55. doi: 10.1007/s00216-012-6091-7. Epub 2012 May 30. Review. PubMed PMID: 22644150.

Arthurs, S. P., Aristizábal, L. F., & Avery, P. B. (2013). Evaluation of Entomopathogenic Fungi Against Chilli Thrips, Scirtothrips dorsalis. Journal of Insect Science, 13, 31.<u>http://doi.org/10.1673/031.013.3101</u>.

Ceballos I, Mosquera S, Angulo M, Mira JJ, Argel LE, Uribe-Velez D, Romero-Tabarez M, Orduz-Peralta S, Villegas V. Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol. 2012 Oct;64(3):641-53. Epub 2012 May 5. PubMed PMID: 22562105.

Chanbusarakum L, Ullman D. Characterization of bacterial symbionts in Frankliniella occidentalis (Pergande), Western flower thrips.J Invertebr Pathol. 2008 Nov;99(3):318-25. doi: 10.1016/j.jip.2008.09.001. Epub 2008 Sep 9. PubMed PMID: 18809409.

De Vries EJ, Breeuwer JA, Jacobs G, Mollema C. The association of Western flower thrips, *Frankliniella occidentalis*, with a near Erwinia species gut bacteria: transient or permanent? J Invertebr Pathol. 2001 Feb; 77(2):120-8. PubMed PMID: 11273692.

De Vries EJ, Jacobs G, Breeuwer JA. Growth and transmission of gut bacteria in the Western flower thrips, Frankliniella occidentalis. J Invertebr Pathol. 2001 Feb;77(2):129-37. PubMed PMID: 11273693.

De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J., & Breeuwer, J. A. J. (2004). Dietdependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. *Proceedings of the Royal Society B: Biological Sciences*, *271*(1553), 2171–2178. <u>http://doi.org/10.1098/rspb.2004.2817</u>.

Dvorak, V., Halada, P., Hlavackova, K., Dokianakis, E., Antoniou, M., & Volf, P. (2014). Identification of phlebotomine sand flies (Diptera: Psychodidae) by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Parasites & Vectors, 7, 21. http://doi.org/10.1186/1756-3305-7-21. REBECCA S. BUCKMAN, LAURENCE A. MOUND and MICHAEL F. WHITI NG. (2012). Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology, 38, 123–133; DOI: 10.1111/j.1365-3113.2012.00650.x.

Souza A, Cruz JC, Sousa NR, Procópio AR, Silva GF. Endophytic bacteria from banana cultivars and their antifungal activity.Genet Mol Res. 2014 Oct 27;13(4):8661-70. doi: 10.4238/2014.October.27.6. PubMed PMID: 25366756.

Wu S, Gao Y, Zhang Y, Wang E, Xu X, et al. (2014). An Entomopathogenic Strain of Beauveria bassiana against Frankliniella occidentalis with no Detrimental Effect on the Predatory Mite Neoseiulus barkeri ?: Evidence from Laboratory Bioassay and Scanning Electron Microscopic Observation. PLoS ONE 9(1): e84732. doi:10.1371/journal.pone.0084732.